Cho hệ phương trình \[\left\{ \begin{array}{l}5x + y = 7\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 9x + y = - 3\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, cách đơn giản nhất là
A. Cộng từng vế của phương trình (1) với phương trình (2).
B. Trừ từng vế của phương trình (1) cho phương trình (2).
C. Nhân hai vế phương trình (1) với 3 rồi trừ từng vế của phương trình mới cho phương trình (2).
D. Nhân hai vế phương trình (1) với 3 rồi cộng từng vế của phương trình mới với phương trình (2).
Đáp án đúng là: B
Từ hệ phương trình đã cho, cách đơn giản nhất để thu được phương trình bậc nhất một ẩn bằng phương pháp cộng đại số là trừ từng vế của phương trình (1) cho phương trình (2).
Khi đó ta thu được \[5x - \left( { - 9x} \right) + y - y = 7 - \left( { - 3} \right)\]
Tức là \[14x = 10.\]
Vậy ta chọn phương án B.
Hệ phương trình \[\left\{ \begin{array}{l}\frac{2}{x} + \frac{1}{y} = 3\\\frac{6}{x} - \frac{7}{y} = - 1\end{array} \right.\] có nghiệm là
Cho hệ phương trình \[\left\{ \begin{array}{l}4x + 7y = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - x - 5y = 0\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, một trong những cách đơn giản nhất là
Cho hệ phương trình \[\left\{ \begin{array}{l}3x - 5y = 1\\6x - 10y = 2\end{array} \right..\] Kết luận nào sau đây đúng về số nghiệm của hệ phương trình đã cho?
III. Vận dụng
Với giá trị nào của tham số \[m\] thì hệ phương trình \[\left\{ \begin{array}{l}3x + y = 4\\\left( {2m + 1} \right)x + 7y = 8\end{array} \right.\] có nghiệm duy nhất \[x = y?\]
Có bao nhiêu giá trị nguyên của \[m\] để hệ phương trình \[\left\{ \begin{array}{l}mx + 2my = m + 1\\x + \left( {m + 1} \right)y = 2\end{array} \right.\] có nghiệm duy nhất \[\left( {x;y} \right)\] sao cho \[G = x - y\] nhận giá trị nguyên?
I. Nhận biết
Cặp số nào sau đây là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\\x - y = 1\end{array} \right.\]?
Để mở chương trình giải hệ phương trình bậc nhất hai ẩn bằng máy tính cầm tay, ta ấn liên tiếp các phím:
Gọi \[\left( {x;y} \right)\] là nghiệm của hệ \[\left\{ \begin{array}{l}3x - 2y = - 1\\4x - 5y = 3\end{array} \right..\] Tổng bình phương của \(x\) và \(y\) là
Giá trị của \[a\] và \(b\) sao cho hệ phương trình \[\left\{ \begin{array}{l}x + ay = 3\\ax - 3by = 4\end{array} \right.\] có nghiệm là \[\left( { - 1;2} \right)\] là
Để giải hệ phương trình \[\left\{ \begin{array}{l} - 2x + 5y = 3\\9x + 8y = 7\end{array} \right.\] bằng máy tính cầm tay, ta ấn liên tiếp các phím:
Để giải hệ phương trình \[\left\{ \begin{array}{l}4x - 2y = 3\\ - 2x + y = 5\end{array} \right.\] bằng máy tính cầm tay, ta ấn liên tiếp các phím
Cho hệ phương trình \[\left\{ \begin{array}{l} - 2x + 2y = - 1\\3x + y = 7\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp thế (biểu diễn \(y\) theo \(x)\), ta được hệ thức biểu diễn \(y\) theo \(x\) là
II. Thông hiểu
Cho hệ phương trình \[\left\{ \begin{array}{l}2x - y = 1\\3x + 2y = 5\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp thế (biểu diễn \(y\) theo \(x)\), ta được phương trình ẩn \(x\) là
Cho hệ phương trình \[\left\{ \begin{array}{l}x - 2y = 1\\\left( {{a^2} + 1} \right)x - 4y = 2a\end{array} \right..\] Khi \[a = - 1\] thì hệ phương trình