Cho hệ phương trình \[\left\{ \begin{array}{l}3x - 5y = 1\\6x - 10y = 2\end{array} \right..\] Kết luận nào sau đây đúng về số nghiệm của hệ phương trình đã cho?
A. Có nghiệm duy nhất.
B. Vô nghiệm.
C. Vô số nghiệm.
D. Không có kết luận.
Đáp án đúng là: C
⦁ Cách 1: Sử dụng máy tính cầm tay, lần lượt bấm các phím:
Ta thấy màn hình hiện ra kết quả: Infinite Sol. Nghĩa là, hệ phương trình có vô số nghiệm.
Do đó ta chọn phương án C.
⦁ Cách 2. Giải hệ phương trình \[\left\{ \begin{array}{l}3x - 5y = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\6x - 10y = 2\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]
Nhân hai vế của phương trình (1) với \[2\], ta được hệ phương trình: \[\left\{ \begin{array}{l}6x - 10y = 2\\6x - 10y = 2\end{array} \right.\]
Trừ từng vế của phương trình (1) cho phương trình (2), ta được \(0x = 0\).
Vậy hệ phương trình đã cho có vô số nghiệm \[\left( {x;\,\,\frac{3}{5}x - \frac{1}{5}} \right)\] với \[x \in \mathbb{R}\] tùy ý.
Do đó ta chọn phương án C.
Hệ phương trình \[\left\{ \begin{array}{l}\frac{2}{x} + \frac{1}{y} = 3\\\frac{6}{x} - \frac{7}{y} = - 1\end{array} \right.\] có nghiệm là
Cho hệ phương trình \[\left\{ \begin{array}{l}4x + 7y = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - x - 5y = 0\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, một trong những cách đơn giản nhất là
III. Vận dụng
Với giá trị nào của tham số \[m\] thì hệ phương trình \[\left\{ \begin{array}{l}3x + y = 4\\\left( {2m + 1} \right)x + 7y = 8\end{array} \right.\] có nghiệm duy nhất \[x = y?\]
Có bao nhiêu giá trị nguyên của \[m\] để hệ phương trình \[\left\{ \begin{array}{l}mx + 2my = m + 1\\x + \left( {m + 1} \right)y = 2\end{array} \right.\] có nghiệm duy nhất \[\left( {x;y} \right)\] sao cho \[G = x - y\] nhận giá trị nguyên?
I. Nhận biết
Cặp số nào sau đây là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\\x - y = 1\end{array} \right.\]?
Để mở chương trình giải hệ phương trình bậc nhất hai ẩn bằng máy tính cầm tay, ta ấn liên tiếp các phím:
Gọi \[\left( {x;y} \right)\] là nghiệm của hệ \[\left\{ \begin{array}{l}3x - 2y = - 1\\4x - 5y = 3\end{array} \right..\] Tổng bình phương của \(x\) và \(y\) là
Giá trị của \[a\] và \(b\) sao cho hệ phương trình \[\left\{ \begin{array}{l}x + ay = 3\\ax - 3by = 4\end{array} \right.\] có nghiệm là \[\left( { - 1;2} \right)\] là
Để giải hệ phương trình \[\left\{ \begin{array}{l} - 2x + 5y = 3\\9x + 8y = 7\end{array} \right.\] bằng máy tính cầm tay, ta ấn liên tiếp các phím:
Để giải hệ phương trình \[\left\{ \begin{array}{l}4x - 2y = 3\\ - 2x + y = 5\end{array} \right.\] bằng máy tính cầm tay, ta ấn liên tiếp các phím
Cho hệ phương trình \[\left\{ \begin{array}{l} - 2x + 2y = - 1\\3x + y = 7\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp thế (biểu diễn \(y\) theo \(x)\), ta được hệ thức biểu diễn \(y\) theo \(x\) là
II. Thông hiểu
Cho hệ phương trình \[\left\{ \begin{array}{l}2x - y = 1\\3x + 2y = 5\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp thế (biểu diễn \(y\) theo \(x)\), ta được phương trình ẩn \(x\) là
Cho hệ phương trình \[\left\{ \begin{array}{l}5x + y = 7\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 9x + y = - 3\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, cách đơn giản nhất là
Cho hệ phương trình \[\left\{ \begin{array}{l}x - 2y = 1\\\left( {{a^2} + 1} \right)x - 4y = 2a\end{array} \right..\] Khi \[a = - 1\] thì hệ phương trình