Có bao nhiêu giá trị nguyên của \[m\] để hệ phương trình \[\left\{ \begin{array}{l}mx + 2my = m + 1\\x + \left( {m + 1} \right)y = 2\end{array} \right.\] có nghiệm duy nhất \[\left( {x;y} \right)\] sao cho \[G = x - y\] nhận giá trị nguyên?
A. 1.
B. 2.
C. 3.
D. 4.
Đáp án đúng là: C
Ta có: \[\left\{ \begin{array}{l}mx + 2my = m + 1\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\x + \left( {m + 1} \right)y = 2\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]
Từ phương trình (2), ta có: \[x = 2 - \left( {m + 1} \right)y.\]
Thay \[x = 2 - \left( {m + 1} \right)y\] vào phương trình (1), ta được:
\[m\left[ {2 - \left( {m + 1} \right)y} \right] + 2my = m + 1\]
\[2m - \left( {{m^2} + m} \right)y + 2my = m + 1\]
\[\left( { - {m^2} + m} \right)y = - m + 1\]
\[ - m\left( {m - 1} \right)y = - \left( {m - 1} \right)\]
Để phương trình có nghiệm duy nhất thì \[m \ne 0\] và \[m \ne 1.\]
Khi đó ta có \[y = \frac{{ - \left( {m - 1} \right)}}{{ - m\left( {m - 1} \right)}} = \frac{1}{m}.\]
Suy ra \[x = 2 - \left( {m + 1} \right) \cdot \frac{1}{m} = \frac{{2m - m - 1}}{m} = \frac{{m - 1}}{m}.\]
Vì vậy \[A = x - y = \frac{{m - 1}}{m} - \frac{1}{m} = 1 - \frac{1}{m} - \frac{1}{m} = 1 - \frac{2}{m}.\]
Với \(m \in \mathbb{Z},\) để biểu thức \[A\] nhận giá trị nguyên thì \[\frac{2}{m}\] nhận giá trị nguyên.
Suy ra \[m \in \]Ư\[\left( 2 \right) = \left\{ { - 2; - 1;1;2} \right\}.\]
So với điều kiện \[m \ne 0\] và \[m \ne 1,\] ta nhận \[m \in \left\{ { - 2; - 1;2} \right\}.\]
Vậy có 3 giá trị của \(m\) thỏa mãn yêu cầu đề bài, ta chọn phương án C.
III. Vận dụng
Với giá trị nào của tham số \[m\] thì hệ phương trình \[\left\{ \begin{array}{l}3x + y = 4\\\left( {2m + 1} \right)x + 7y = 8\end{array} \right.\] có nghiệm duy nhất \[x = y?\]
Hệ phương trình \[\left\{ \begin{array}{l}\frac{2}{x} + \frac{1}{y} = 3\\\frac{6}{x} - \frac{7}{y} = - 1\end{array} \right.\] có nghiệm là
Cho hệ phương trình \[\left\{ \begin{array}{l}3x - 5y = 1\\6x - 10y = 2\end{array} \right..\] Kết luận nào sau đây đúng về số nghiệm của hệ phương trình đã cho?
Để giải hệ phương trình \[\left\{ \begin{array}{l} - 2x + 5y = 3\\9x + 8y = 7\end{array} \right.\] bằng máy tính cầm tay, ta ấn liên tiếp các phím:
I. Nhận biết
Cặp số nào sau đây là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\\x - y = 1\end{array} \right.\]?
Cho hệ phương trình \[\left\{ \begin{array}{l} - 2x + 2y = - 1\\3x + y = 7\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp thế (biểu diễn \(y\) theo \(x)\), ta được hệ thức biểu diễn \(y\) theo \(x\) là
II. Thông hiểu
Cho hệ phương trình \[\left\{ \begin{array}{l}2x - y = 1\\3x + 2y = 5\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp thế (biểu diễn \(y\) theo \(x)\), ta được phương trình ẩn \(x\) là
Gọi \[\left( {x;y} \right)\] là nghiệm của hệ \[\left\{ \begin{array}{l}3x - 2y = - 1\\4x - 5y = 3\end{array} \right..\] Tổng bình phương của \(x\) và \(y\) là
Cho hệ phương trình \[\left\{ \begin{array}{l}5x + y = 7\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - 9x + y = - 3\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, cách đơn giản nhất là
Để mở chương trình giải hệ phương trình bậc nhất hai ẩn bằng máy tính cầm tay, ta ấn liên tiếp các phím:
Cho hệ phương trình \[\left\{ \begin{array}{l}x - 2y = 1\\\left( {{a^2} + 1} \right)x - 4y = 2a\end{array} \right..\] Khi \[a = - 1\] thì hệ phương trình
Giá trị của \[a\] và \(b\) sao cho hệ phương trình \[\left\{ \begin{array}{l}x + ay = 3\\ax - 3by = 4\end{array} \right.\] có nghiệm là \[\left( { - 1;2} \right)\] là
Để giải hệ phương trình \[\left\{ \begin{array}{l}4x - 2y = 3\\ - 2x + y = 5\end{array} \right.\] bằng máy tính cầm tay, ta ấn liên tiếp các phím
Cho hệ phương trình \[\left\{ \begin{array}{l}4x + 7y = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\ - x - 5y = 0\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, một trong những cách đơn giản nhất là