Với hai số thực \[a,b,\] khi \[ab < 0\] thì ta nói:
A. \[a,b\] cùng dương.
B. \[a,b\] cùng âm.
C. \[a,b\] cùng dấu.
D. \[a,b\] trái dấu.
Đáp án đúng là: D
Với hai số thực \[a,b,\] khi \[ab < 0\] thì ta nói \[a,b\] trái dấu và ngược lại.
Với hai số thực \[a,b,\] khi \[ab > 0\] thì ta nói \[a,b\] cùng dương hoặc \[a,b\] cùng âm (hay \[a,b\] cùng dấu) và ngược lại.
Vậy ta chọn phương án D.
Giả sử \[t\] là số giờ làm việc tối thiểu của công nhân trong một ngày. Dùng kí hiệu để viết bất đẳng thức trong trường hợp: “Số giờ làm việc tối thiểu của công nhân trong một ngày là 8 giờ” ta được
I. Nhận biết
Bất đẳng thức mô tả phát biểu “\[x\] là số không âm” là
Cho bất đẳng thức \[m > n.\] Chọn kết luận đúng trong các kết luận sau:
Cho \[x - 2 \ge y - 2.\] Bất đẳng thức thể hiện mối quan hệ giữa \(x\) và \(y\) là
Trong các cặp bất đẳng thức sau, cặp bất đẳng thức nào cùng chiều?
Cho các khẳng định sau với mọi \[x,y\] là số dương:
(I) \[\left( {x + y} \right)\left( {\frac{1}{x} + \frac{1}{y}} \right) \ge 4.\]
(II) \[{x^2} + {y^3} \le 0.\]
(III) \[\frac{1}{x} + \frac{1}{y} > 0.\]
Có bao nhiêu khẳng định đúng?