Chọn khẳng định sai. Nếu \[a < b\] thì
A. \[5a - 6 < 5b - 6.\]
B. \[2a + 3 < 2b + 7.\]
C. \[8 - 7a < 8 - 7b.\]
D. \[11 - 4a > 9 - 4b.\]
Đáp án đúng là: C
⦁ Vì \[a < b\] nên \[5a < 5b.\]
Suy ra \[5a - 6 < 5b - 6.\]
Do đó phương án A là đúng.
⦁ Vì \[a < b\] nên \[2a < 2b.\]
Suy ra \[2a + 3 < 2b + 3.\]
Mà \[2b + 3 < 2b + 7\] nên \[2a + 3 < 2b + 7.\]
Do đó phương án B là đúng.
⦁ Vì \[a < b\] nên \[ - 7a > - 7b.\] </>
Suy ra \[8 - 7a > 8 - 7b.\]
Do đó phương án C là sai.
⦁ Vì \[a < b\] nên \[ - 4a > - 4b.\] </>
Suy ra \[9 - 4a > 9 - 4b.\]
Mà \(11 - 4a > 9 - 4a\) nên \(11 - 4a > 9 - 4b.\)
Do đó phương án D là đúng.
Vậy ta chọn phương án C.
Trong các cặp bất đẳng thức sau, cặp bất đẳng thức nào cùng chiều?
I. Nhận biết
Bất đẳng thức mô tả phát biểu “\[x\] là số không âm” là
Cho bất đẳng thức \[m > n.\] Chọn kết luận đúng trong các kết luận sau:
Cho \[x - 2 \ge y - 2.\] Bất đẳng thức thể hiện mối quan hệ giữa \(x\) và \(y\) là
Giả sử \[t\] là số giờ làm việc tối thiểu của công nhân trong một ngày. Dùng kí hiệu để viết bất đẳng thức trong trường hợp: “Số giờ làm việc tối thiểu của công nhân trong một ngày là 8 giờ” ta được
Cho các khẳng định sau với mọi \[x,y\] là số dương:
(I) \[\left( {x + y} \right)\left( {\frac{1}{x} + \frac{1}{y}} \right) \ge 4.\]
(II) \[{x^2} + {y^3} \le 0.\]
(III) \[\frac{1}{x} + \frac{1}{y} > 0.\]
Có bao nhiêu khẳng định đúng?