III. Vận dụng
Cho \[x + y > 1.\] Khẳng định nào sau đây là đúng?
A. \[{x^2} + {y^2} = \frac{1}{2}.\]
B. \[{x^2} + {y^2} < \frac{1}{2}.\]
C. \[{x^2} + {y^2} \le \frac{1}{2}.\]
D. \[{x^2} + {y^2} > \frac{1}{2}.\]
Đáp án đúng là: D
Bình phương hai vế của bất đẳng thức \[x + y > 1,\] ta được: \[{x^2} + 2xy + {y^2} > 1\] (1)
Từ bất đẳng thức \[{\left( {x - y} \right)^2} \ge 0,\] ta có: \[{x^2} - 2xy + {y^2} \ge 0\] (2)
Cộng từng vế của (1) và (2), ta được:
\[2{x^2} + \left( {2xy - 2xy} \right) + 2{y^2} > 1 + 0\] hay \[2{x^2} + 2{y^2} > 1.\]
Tức là, \[2\left( {{x^2} + {y^2}} \right) > 1.\]
Khi đó \[{x^2} + {y^2} > \frac{1}{2}.\]
Vậy ta chọn phương án D.
I. Nhận biết
Bất đẳng thức mô tả phát biểu “\[x\] là số không âm” là
Cho bất đẳng thức \[m > n.\] Chọn kết luận đúng trong các kết luận sau:
Cho \[x - 2 \ge y - 2.\] Bất đẳng thức thể hiện mối quan hệ giữa \(x\) và \(y\) là
Cho các khẳng định sau với mọi \[x,y\] là số dương:
(I) \[\left( {x + y} \right)\left( {\frac{1}{x} + \frac{1}{y}} \right) \ge 4.\]
(II) \[{x^2} + {y^3} \le 0.\]
(III) \[\frac{1}{x} + \frac{1}{y} > 0.\]
Có bao nhiêu khẳng định đúng?
Giả sử \[t\] là số giờ làm việc tối thiểu của công nhân trong một ngày. Dùng kí hiệu để viết bất đẳng thức trong trường hợp: “Số giờ làm việc tối thiểu của công nhân trong một ngày là 8 giờ” ta được