Cho phương trình có tham số m: .
Chỉ ra khẳng định đúng trong các khẳng định sau:
A. Khi m > -1 thì phương trình (*) có tổng hai nghiệm là số dương
B. Khi m < -3 thì phương trình (*) có hai nghiệm trái dấu
C. Khi m > -3 thì phương trình (*) có hai nghiệm cùng dấu
D. Với mỗi giá trị của m đều tìm được số k > 0 sao cho hiệu hai nghiệm bằng k
* Phương trình có ac = 2(m + 3) < 0 khi m < -3, vậy phương án B đúng.
* Xét một giá trị m lớn hơn -1 và lớn hơn -3, chẳng hạn m =0 thì phương trình (*) trở thành :
2x2 – x + 3= 0 và , tức là phương trình (*) vô nghiệm, vậy các phương án A, C, D đều sai.
Cho phương trình có tham số m: .
Chỉ ra khẳng định sai trong các khẳng định sau:
Cho phương trình có tham số m: . (*)
Chỉ ra khẳng định sai trong các khẳng định sau:
Cho phương trình có tham số m:
Chỉ ra khẳng định sai trong các khẳng định sau:
Cho phương trình có tham số m:
. (*)
Chỉ ra khẳng định sai trong các khẳng định sau:
Phương trình (có tham số m) m(x + m) = 3(x + m) có vô số nghiệm khi
Cho phương trình có tham số m: .
Chỉ ra khẳng định sai trong các khẳng định sau:
Cho phương trình có tham số m:
Chỉ ra khẳng định đúng trong các khẳng định sau:
Phương trình (có tham số m) m(x - m + 2) = m(x - 1) + 2 vô nghiệm khi
Cho các phương trình có tham số m sau:
(1); (2);
(3); (4).
Phương trình luôn vô nghiệm với mọi giá trị của m là:
Cho các phương trình có tham số m sau:
(1); (2);
(3); (4).
Phương trình nào có hai nghiệm phân biệt với mọi giá trị của m?
Chỉ ra khẳng định sai trong các khẳng định sau:
Trường hợp nào sau đây phương trình (m là tham số) có hai nghiệm phân biệt?