Cho \[a > 0,a \ne 1\]. Tìm mệnh đề đúng trong các mệnh đề sau:
A.Tập xác định của hàmsố \[y = {a^x}\]là \[\left( {0; + \infty } \right)\]
B.Tập giá trị của hàmsố \[y = {\log _a}x\] là tập R
C.Tập giá trị của hàmsố \[y = {a^x}\] là tập R
D.Tập xác định của hàmsố \[y = {\log _a}x\] là tập R
Cho \[a > 0;a \ne 1\] khi đó hàm số \[y = {a^x}\] có tập xác định là R , tập giá trị là \[\left( {0; + \infty } \right)\]
Hàm số \[y = {\log _a}x\] có tập xác định là \[\left( {0; + \infty } \right)\], tập giá trị là R
Suy ra B đúng
Đáp án cần chọn là: B
Tiệm cận đứng của đồ thị hàm số \[y = {\log _a}x(0 < a \ne 1)\] là đường thẳng:
Điểm nào sau đây không thuộc đồ thị hàm số \[y = lo{g_a}x(0 < a \ne 1)\;\]?
Tìm tất cả các giá trị thực của tham số m sao cho hàm số \[y = log\left( {{x^2} - 2mx + 4} \right)\]có tập xác định là R
Cho hai hàm số \[y = \ln \left| {\frac{{x - 2}}{x}} \right|\]và\(y = \frac{3}{{x - 2}} - \frac{1}{x} + 4m - 2020\). Tổng tất cả các giá trị nguyên của tham số m để hai đồ thị hàm số cắt nhau tại một điểm duy nhất bằng:
Cho ba số thực dương a,b,c khác 1. Đồ thị các hàm số \[y = {\log _a}x,y = {\log _b}x,y = {\log _c}x\] được cho trong hình vẽ sau:
Mệnh đề nào dưới đây đúng?
Đạo hàm hàm số \[y = {\log _{2018}}\left( {2018x + 1} \right)\] là:
Xét các số thực a, b thỏa mãn a>b>1. Tìm giá trị nhỏ nhất Pmin của biểu thức \[P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\frac{a}{b}\].
Cho a và b là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị \[y = {\log _a}x,y = {\log _b}x\] và trục hoành lần lượt tại A,B và H phân biệt ta đều có 3HA=4HB (hình vẽ bên dưới). Khẳng định nào sau đây là đúng?
Nếu gọi \[({G_1})\]là đồ thị hàm số \[y = {a^x}\;\] và \[({G_2})\]là đồ thị hàm số \[y = lo{g_a}x\;\] với \[0 < a \ne 1\]. Mệnh đề nào dưới đây đúng ?
Điểm \[({x_0};{y_0})\;\]thuộc đồ thị hàm số \[y = lo{g_a}x(0 < a \ne 1)\;\] nếu: