Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

11/07/2024 91

Tìm tập hợp tất cả các giá trị của tham số m để phương trình  \[lo{g_2}x - lo{g_2}(x - 2) = m\] có nghiệm

A.\[1 \le m < + \infty \]

B. \[1 < m < + \infty \]

C. \[0 \le m < + \infty \]

D. \[0 < m < + \infty \]

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Phương trình đã cho tương đương với\(\left\{ {\begin{array}{*{20}{c}}{lo{g_2}\left( {\frac{x}{{x - 2}}} \right) = m}\\{x > 2}\end{array}} \right.\)

Để phương trình đã cho có nghiệm thì đường thẳng y=m cắt đồ thị hàm số\[y = {\log _2}f\left( x \right)\] với \[f\left( x \right) = \frac{x}{{x - 2}}\] trên khoảng\[\left( {2; + \infty } \right)\]

Có\[f'\left( x \right) = - \frac{2}{{{{\left( {x - 2} \right)}^2}}} < 0,\forall x > 2\] và\[\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 1\] nên ta có các tập giá trị của các hàm số là \[f\left( x \right) \in \left( {1; + \infty } \right) \Rightarrow {\log _2}f\left( x \right) \in \left( {0; + \infty } \right)\]</>

Vậy\[0 < m < + \infty \]Đáp án cần chọn là: D

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giá trị của x thỏa mãn \[lo{g_{\frac{1}{2}}}(3 - x) = 2\;\] là

Xem đáp án » 13/10/2022 172

Câu 2:

Tìm tập nghiệm S của phương trình \[{\log _2}\left( {x - 1} \right) + {\log _2}\left( {x + 1} \right) = 3\].

Xem đáp án » 13/10/2022 156

Câu 3:

Cho a,b,c là các số thực dương khác 1 thỏa mãn \[\log _a^2b + \log _b^2c = {\log _a}\frac{c}{b} - 2{\log _b}\frac{c}{b} - 3\]. Gọi \[M,m\;\] lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của \[P = lo{g_a}b - lo{g_b}c\]. Giá trị của biểu thức \[S = m - 3M\;\] bằng

Xem đáp án » 13/10/2022 145

Câu 4:

Tìm tập nghiệm S của phương trình \[lo{g_2}({x^2} - 4x + 3) = lo{g_2}(4x - 4)\]

Xem đáp án » 13/10/2022 144

Câu 5:

Cho hàm số \[f\left( x \right) = {\log _2}\left( {\cos x} \right).\] Phương trình \[f\prime \left( x \right) = 0\;\] có bao nhiêu nghiệm trong khoảng \[\left( {0;2020\pi } \right)?\]

Xem đáp án » 13/10/2022 138

Câu 6:

Cho \[0 \le x \le 2020\]và \[lo{g_2}(2x + 2) + x - 3y = {8^y}\]. Có bao nhiêu cặp số (x;y) nguyên thỏa mãn các điều kiện trên?

Xem đáp án » 13/10/2022 133

Câu 7:

Tập nghiệm của phương trình \[{\log _2}\left( {{x^2} - 1} \right) = {\log _2}2x\] là:

Xem đáp án » 13/10/2022 125

Câu 8:

Cho các số thực dương a,b,c  khác 1 thỏa mãn 

Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \[P = lo{g_a}ab - lo{g_b}bc\]. Tính giá trị của biểu thức \[S = 2{m^2} + 9{M^2}\].

Xem đáp án » 13/10/2022 125

Câu 9:

Giải phương trình \[{\log _2}\left( {{2^x} - 1} \right).{\log _4}\left( {{2^{x + 1}} - 2} \right) = 1\] Ta có nghiệm:

Xem đáp án » 13/10/2022 121

Câu 10:

Tổng tất cả các nghiệm của phương trình \[{\log _3}\left( {7 - {3^x}} \right) = 2 - x\] bằng:

Xem đáp án » 13/10/2022 118

Câu 11:

Cho phương trình: \[{4^{ - \left| {x - m} \right|}}.{\log _{\sqrt 2 }}\left( {{x^2} - 2x + 3} \right) + {2^{2x - {x^2}}}.{\log _{\frac{1}{2}}}\left( {2\left| {x - m} \right| + 2} \right) = 0\] với m là tham số. Tổng tất cả các giá trị của tham số m để phương trình đã cho có ba nghiệm phân biệt là:

Xem đáp án » 13/10/2022 112

Câu 12:

Hỏi phương trình \[2{\log _3}\left( {\cot x} \right) = {\log _2}\left( {\cos x} \right)\]có bao nhiêu nghiệm trong khoảng \[\left( {0;2017\pi } \right).\]

Xem đáp án » 13/10/2022 111

Câu 13:

Tìm m để phương trình \[mln(1 - x) - lnx = m\] có nghiệm \[x \in \left( {0;1} \right)\]

Xem đáp án » 13/10/2022 111

Câu 14:

Tập hợp nghiệm của phương trình \[{\log _3}\left( {{9^{50}} + 6{x^2}} \right) = {\log _{\sqrt 3 }}\left( {{3^{50}} + 2x} \right)\] là:

Xem đáp án » 13/10/2022 107

Câu 15:

Phương trình \[{\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1\] có hai nghiệm là \[{x_1};{x_2}\;\] thì tổng \[{x_1} + {x_2}\;\] là:

Xem đáp án » 13/10/2022 107

Câu hỏi mới nhất

Xem thêm »
Xem thêm »