Cho các số thực a,b,c thuộc khoảng \[\left( {1; + \infty } \right)\;\]và thỏa mãn \[\,\,\,\,\,\,\log _{\sqrt a }^2b + {\log _b}c.{\log _b}\left( {\frac{{{c^2}}}{b}} \right) + 9{\log _a}c = 4{\log _a}b\]. Giá trị của biểu thức \[lo{g_a}b + lo{g_b}{c^2}\;\] bằng:
A.1
B.\(\frac{1}{2}\)
C.2
D.3
Ta có:
\[\begin{array}{*{20}{l}}{\,\,\,\,\,\,\log _{\sqrt a }^2b + {{\log }_b}c.{{\log }_b}\left( {\frac{{{c^2}}}{b}} \right) + 9{{\log }_a}c = 4{{\log }_a}b}\\{ \Leftrightarrow 4\log _a^2b + {{\log }_b}c.\left( {2{{\log }_b}c - 1} \right) + 9{{\log }_a}c = 4{{\log }_a}b}\\{ \Leftrightarrow 4\log _a^2b + 2\log _b^2c - {{\log }_b}c + 9{{\log }_a}b.{{\log }_b}c = 4{{\log }_a}b\,\,\left( * \right)}\end{array}\]
Đặt \[x = {\log _a}b,\,\,y = {\log _b}c\] ta có:\(\left\{ {\begin{array}{*{20}{c}}{x = lo{g_a}b > lo{g_a}1 = 0}\\{y = lo{g_b}c > lo{g_b}1 = 0}\end{array}} \right.(do\,\,\,a,b,c > 1)\)
Khi đó phương trình (*) trở thành:
\[4{x^2} + 2{y^2} - y + 9xy = 4x\]
\[ \Leftrightarrow 4{x^2} + xy + 8xy + 2{y^2} - y - 4x = 0\]
\[ \Leftrightarrow x(4x + y) + 2y(4x + y) - (4x + y) = 0\]
\[ \Leftrightarrow (4x + y)(x + 2y - 1) = 0\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{4x + y = 0}\\{x + 2y - 1 = 0}\end{array}} \right.\)
TH1:\[y = - 4x\] loại do x,y>0.
TH2: \[x + 2y - 1 = 0 \Leftrightarrow x + 2y = 1\] khi đó ta có:\[{\log _a}b + {\log _b}{c^2} = x + 2y = 1\]Đáp án cần chọn là: A
Tìm tập nghiệm S của phương trình \[{\log _2}\left( {x - 1} \right) + {\log _2}\left( {x + 1} \right) = 3\].
Cho a,b,c là các số thực dương khác 1 thỏa mãn \[\log _a^2b + \log _b^2c = {\log _a}\frac{c}{b} - 2{\log _b}\frac{c}{b} - 3\]. Gọi \[M,m\;\] lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của \[P = lo{g_a}b - lo{g_b}c\]. Giá trị của biểu thức \[S = m - 3M\;\] bằng
Tìm tập nghiệm S của phương trình \[lo{g_2}({x^2} - 4x + 3) = lo{g_2}(4x - 4)\]
Cho hàm số \[f\left( x \right) = {\log _2}\left( {\cos x} \right).\] Phương trình \[f\prime \left( x \right) = 0\;\] có bao nhiêu nghiệm trong khoảng \[\left( {0;2020\pi } \right)?\]
Cho \[0 \le x \le 2020\]và \[lo{g_2}(2x + 2) + x - 3y = {8^y}\]. Có bao nhiêu cặp số (x;y) nguyên thỏa mãn các điều kiện trên?
Tập nghiệm của phương trình \[{\log _2}\left( {{x^2} - 1} \right) = {\log _2}2x\] là:
Cho các số thực dương a,b,c khác 1 thỏa mãn
Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \[P = lo{g_a}ab - lo{g_b}bc\]. Tính giá trị của biểu thức \[S = 2{m^2} + 9{M^2}\].
Giải phương trình \[{\log _2}\left( {{2^x} - 1} \right).{\log _4}\left( {{2^{x + 1}} - 2} \right) = 1\] Ta có nghiệm:
Tổng tất cả các nghiệm của phương trình \[{\log _3}\left( {7 - {3^x}} \right) = 2 - x\] bằng:
Cho phương trình: \[{4^{ - \left| {x - m} \right|}}.{\log _{\sqrt 2 }}\left( {{x^2} - 2x + 3} \right) + {2^{2x - {x^2}}}.{\log _{\frac{1}{2}}}\left( {2\left| {x - m} \right| + 2} \right) = 0\] với m là tham số. Tổng tất cả các giá trị của tham số m để phương trình đã cho có ba nghiệm phân biệt là:
Hỏi phương trình \[2{\log _3}\left( {\cot x} \right) = {\log _2}\left( {\cos x} \right)\]có bao nhiêu nghiệm trong khoảng \[\left( {0;2017\pi } \right).\]
Tìm m để phương trình \[mln(1 - x) - lnx = m\] có nghiệm \[x \in \left( {0;1} \right)\]
Phương trình \[{\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1\] có hai nghiệm là \[{x_1};{x_2}\;\] thì tổng \[{x_1} + {x_2}\;\] là:
Tập hợp nghiệm của phương trình \[{\log _3}\left( {{9^{50}} + 6{x^2}} \right) = {\log _{\sqrt 3 }}\left( {{3^{50}} + 2x} \right)\] là: