Đồ thị hàm số nào sau đây có 3 điểm cực trị?
A.\[y = {x^4} + 2{x^2}\]
B. \[y = {x^4} - 2{x^2} - 1\]
C. \[y = 2{x^4} + 4{x^2} - 4\]
D. \[y = - {x^4} - 2{x^2} - 1\]
Xét phương án B ta thấy \[y' = 4{x^3} - 4x = 4x({x^2} - 1) = 4x\left( {x + 1} \right)\left( {x - 1} \right).\].
Phương trình \[y' = 0\] có ba nghiệm đơn phân biệt cho nên thỏa mãn yêu cầu bài toán.
Ngoài ra, ta tính y′ và giải các phương trình \[y' = 0\] ở từng đáp án ta thấy:
Đáp án C: \[y' = 8{x^3} + 8x = 8x({x^2} + 1)\] chỉ có 1 nghiệm x=0 nên loại.
Đáp án D: \[y' = - 4{x^3} - 4x = - 4x({x^2} + 1)\] chỉ có 1 nghiệm x=0 nên loại.
Đáp án cần chọn là: B
Điều kiện để hàm số bậc ba không có cực trị là phương trình y′=0 có:
Giả sử \[y = f(x)\;\] có đạo hàm cấp hai trên (a;b). Nếu \(\left\{ {\begin{array}{*{20}{c}}{f'\left( {{x_0}} \right) = 0}\\{f''\left( {{x_0}} \right) > 0}\end{array}} \right.\) thì
Hình vẽ dưới đây mô tả số người nhiễm Covid-19 đang được điều trị ở Việt Nam tính từ ngày 23/01/2020 đến ngày 13/02/2021.
Hỏi từ ngày 16/06/2020 đến ngày 27/01/2021, ngày nào Việt Nam có số người được điều trị Covid-19 nhiều nhất?
Cho hàm số y=f(x) có đạo hàm trên (a;b). Nếu \[f\prime (x)\;\] đổi dấu từ âm sang dương qua điểm \[{x_0}\] thuộc (a;b) thì
Cho hàm số \[y = \frac{{ - {x^2} + 3x + 6}}{{x + 2}}\], chọn kết luận đúng:
Cho hàm số bậc hai y=f(x) có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm \[g\prime (x) = f(x) + m\]. Tìm tất cả các giá trị thực của tham số m để hàm số g(x) không có cực trị.
Số điểm cực trị của đồ thị hàm số \[y = \frac{{x - 1}}{{2 - x}}\] là:
Cho hàm số y=f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây là khẳng định sai:
Đồ thị hàm số \[y = {x^3} - 3x + 2\] có 2 điểm cực trị A,B. Diện tích tam giác OAB với O(0;0) là gốc tọa độ bằng:
Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \[y = {x^3} - 3{x^2} + 1\] là:
Nếu \[{x_0}\] là điểm cực đại của hàm số thì \[({x_0};f({x_0}))\;\]là:
Cho hàm số y=f(x) có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?