Cho F(x) là một nguyên hàm của hàm số \[f\left( x \right) = \frac{x}{{{{\cos }^2}x}}\] thỏa mãn F(0)=0. Tính \[F(\pi )?\]
A.\[F\left( \pi \right) = - 1\]
B. \[F\left( \pi \right) = \frac{1}{2}\]
C. \[F\left( \pi \right) = 1\]
D. \[F\left( \pi \right) = 0\]
\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = \frac{1}{{co{s^2}x}}dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = tanx}\end{array}} \right.\)
\[ \Rightarrow F(x) = xtanx - \smallint tanxdx + C = xtanx - \smallint \frac{{sinx}}{{cosx}}dx + C\]
\[ = xtanx + \smallint \frac{{d(cosx)}}{{cosx}} + C = xtanx + ln|cosx| + C.\]
\[ \Rightarrow F(0) = C = 0 \Rightarrow F(\pi ) = 0\]
Đáp án cần chọn là: D
Trong phương pháp nguyên hàm từng phần, nếu \(\left\{ {\begin{array}{*{20}{c}}{u = g\left( x \right)}\\{dv = h\left( x \right)dx}\end{array}} \right.\) thì:
Cho hàm số f(x) có đạo hàm liên tục trên \(\mathbb{R}\) và \[f\left( 0 \right) = 1,\;F(x) = f(x) - {e^x} - x\;\] là một nguyên hàm của f(x). Họ các nguyên hàm của f(x) là:
Tìm nguyên hàm của hàm số \[f\left( x \right) = {x^2}ln\left( {3x} \right)\]
Cho \[F\left( x \right) = \smallint \left( {x + 1} \right)f'\left( x \right)dx\]. Tính \[I = \smallint f(x)dx\;\] theo F(x).
Tính \[I = \smallint \ln \left( {x + \sqrt {{x^2} + 1} } \right)dx\] ta được:
Biết \[F\left( x \right) = \left( {ax + b} \right).{e^x}\] là nguyên hàm của hàm số \[y = (2x + 3).{e^x}\]. Khi đó b−a là
Nguyên hàm của hàm số \[y = \frac{{\left( {{x^2} + x} \right){e^x}}}{{x + {e^{ - x}}}}dx\] là:
Ta có \[ - \frac{{x + a}}{{{e^x}}}\] là một họ nguyên hàm của hàm số \[f(x) = \frac{x}{{{e^x}}}\], khi đó:
Biết rằng \[x{e^x}\] là một nguyên hàm của hàm số f(−x) trên khoảng \[\left( { - \infty ; + \infty } \right)\]. Gọi F(x) là một nguyên hàm của \[f\prime \left( x \right){e^x}\;\] thỏa mãn F(0)=1, giá trị của F(−1) bằng:
Gọi F(x) là một nguyên hàm của hàm số \[y = x.cosx\] mà F(0)=1. Phát biểu nào sau đây đúng:
Cho hàm số f(x) có đạo hàm liên tục trên \(\mathbb{R}\) và \[f\left( 1 \right) = 0,\;F(x) = {[f(x)]^{2020}}\] là một nguyên hàm của \[2020x.{e^x}\]. Họ các nguyên hàm của \[{f^{2020}}(x)\;\] là: