Chủ nhật, 12/01/2025
IMG-LOGO

Câu hỏi:

23/07/2024 91

Tính tích phân \[I = \mathop \smallint \limits_1^{{2^{1000}}} \frac{{\ln x}}{{{{(x + 1)}^2}}}dx\]

A.\[I = - \frac{{\ln {2^{1000}}}}{{1 + {2^{1000}}}} + \ln \frac{{{2^{1001}}}}{{1 + {2^{1000}}}}\]

Đáp án chính xác

B. \[I = - \frac{{1000\ln 2}}{{1 + {2^{1000}}}} + \ln \frac{{{2^{1000}}}}{{1 + {2^{1000}}}}\]

C. \[I = \frac{{\ln {2^{1000}}}}{{1 + {2^{1000}}}} - 1001\ln \frac{2}{{1 + {2^{1000}}}}\]

D. \[I = \frac{{1000\ln 2}}{{1 + {2^{1000}}}} - \ln \frac{{{2^{1000}}}}{{1 + {2^{1000}}}}\]

Trả lời:

verified Giải bởi Vietjack

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = \ln x}\\{dv = \frac{{dx}}{{{{(x + 1)}^2}}}}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = \frac{{dx}}{x}}\\{v = - \frac{1}{{x + 1}}}\end{array}} \right.\)

\(\begin{array}{l} \Rightarrow I = - \frac{{lnx}}{{x + 1}}\left| {_1^{{2^{1000}}}} \right. + \int\limits_1^{{2^{1000}}} {\frac{1}{{x + 1}}} .\frac{{dx}}{x}\\ = - \frac{{\ln {2^{1000}}}}{{{2^{1000}} + 1}} + \int\limits_1^{{2^{1000}}} {\left( {\frac{1}{x} - \frac{1}{{x + 1}}} \right)} dx\\ = - \frac{{1000ln2}}{{{2^{1000}} + 1}} + \ln \left| {\frac{x}{{x + 1}}} \right|\left| {_1^{{2^{1000}}}} \right.\\ = - \frac{{1000ln2}}{{{2^{1000}} + 1}} + \ln \frac{{{2^{1000}}}}{{{2^{1000}} + 1}} - \ln \frac{1}{2}\\ = - \frac{{1000ln2}}{{{2^{1000}} + 1}} + \ln \frac{{{2^{1001}}}}{{{2^{1000}} + 1}}\end{array}\)

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Để tính \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {x^2}\,\cos x\,{\rm{d}}x\] theo phương pháp tích phân từng phần, ta đặt

Xem đáp án » 13/10/2022 148

Câu 2:

Cho f(x),g(x) là hai hàm số có đạo hàm liên tục trên đoạn \[\left[ {0;1} \right]\;\]và thỏa mãn điều kiện \[\int\limits_0^1 {g\left( x \right)} .f'\left( x \right)dx = 1,\int\limits_0^1 {g'\left( x \right)} .f\left( x \right)dx = 2\]. Tính tích phân \(I = \int\limits_0^1 {\left[ {f\left( x \right).g\left( x \right)} \right]} 'dx\)A.I=2

Xem đáp án » 13/10/2022 140

Câu 3:

Cho \[F\left( x \right) = {x^2}\] là nguyên hàm của hàm số \[f(x){e^{2x}}\;\] và f(x) là hàm số thỏa mãn điều kiện \[f\left( 0 \right) = 0,f\left( 1 \right) = \frac{2}{{{e^2}}}.\]. Tính tích phân \(I = \int\limits_0^1 {f'\left( x \right)} {e^{2x}}dx\)

Xem đáp án » 13/10/2022 137

Câu 4:

Cho hàm số f(x) liên tục trên \[\left( { - \frac{1}{2};2} \right)\;\]thỏa mãn \[f\left( 0 \right) = 2\], \({\int\limits_0^1 {\left[ {f'\left( x \right)} \right]} ^2}dx = 12 - 16\ln 2,\int\limits_0^1 {\frac{{f\left( x \right)}}{{{{\left( {x + 1} \right)}^2}}}} dx = 4\ln 2 - 2\). Tính \(\int\limits_0^1 {f\left( x \right)} dx\)

Xem đáp án » 13/10/2022 124

Câu 5:

Giả sử tích phân \[I = \mathop \smallint \limits_0^4 x\ln {\left( {2x + 1} \right)^{2017}}dx = a + \frac{b}{c}\ln 3.\].  Với phân số  \(\frac{b}{c}\) tối giản. Lúc đó :

Xem đáp án » 13/10/2022 119

Câu 6:

Cho tích phân \[I = \mathop \smallint \limits_1^2 \frac{{x + \ln x}}{{{{\left( {x + 1} \right)}^3}}}{\rm{d}}x = a + b.\ln 2 - c.\ln 3\]với\[a,b,c \in R\], tỉ số \(\frac{c}{a}\) bằng

Xem đáp án » 13/10/2022 117

Câu 7:

Cho tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{4}} \frac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}{\rm{d}}x = \frac{{m - \pi }}{{m + \pi }}\], giá trị của m bằng :

Xem đáp án » 13/10/2022 115

Câu 8:

Cho tích phân \[I = \mathop \smallint \limits_a^b f\left( x \right).g'\left( x \right){\rm{d}}x,\], nếu đặt \(\left\{ {\begin{array}{*{20}{c}}{u = f(x)}\\{dv = g\prime (x)dx}\end{array}} \right.\) thì 

Xem đáp án » 13/10/2022 114

Câu 9:

Cho hàm số y=f(x) liên tục trên đoạn \[\left[ {1;3} \right],\]thỏa mãn \[f(4 - x) = f(x),\forall x \in \left[ {1;3} \right]\;\] và \[\mathop \smallint \limits_1^3 xf\left( x \right)dx = - 2\]. Giá trị \(2\mathop \smallint \limits_1^3 f\left( x \right)dx\) bằng

Xem đáp án » 13/10/2022 112

Câu 10:

Cho \[I = \mathop \smallint \limits_0^1 \left( {x + \sqrt {{x^2} + 15} } \right)dx = a + b\ln 3 + c\ln 5\] với \[a,b,c \in \mathbb{Q}\]. Tính tổng a+b+c.

Xem đáp án » 13/10/2022 110

Câu 11:

Cho tích phân \[I = \mathop \smallint \limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} \frac{{\ln \left( {3\sin x + \cos x} \right)}}{{{{\sin }^2}x}}{\rm{d}}x = m.\ln \sqrt 2 + n.\ln 3 - \frac{\pi }{4}\], tổng m+n

Xem đáp án » 13/10/2022 104

Câu 12:

Cho tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {e^x}\sin x\]. Gọi a,ba,b là các số nguyên thỏa mãn \[I = \frac{{{e^{\frac{\pi }{2}}} + a}}{b}\]

Xem đáp án » 13/10/2022 104

Câu 13:

Tích phân:  \[I = \mathop \smallint \limits_1^e 2x(1 - \ln x)\,dx\] bằng

Xem đáp án » 13/10/2022 101

Câu 14:

Tính tích phân \[I = \mathop \smallint \limits_1^e x\ln x{\rm{d}}x\]

Xem đáp án » 13/10/2022 101

Câu 15:

Cho hàm số f(x) có \[f\left( 2 \right) = 0\;\] và \[f\prime (x) = \frac{{x + 7}}{{\sqrt {2x - 3} }},\;\forall x \in (\frac{3}{2}; + \infty )\;\]. Biết rằng \[\mathop \smallint \limits_4^7 f\left( {\frac{x}{2}} \right)dx = \frac{a}{b}(a,b \in \mathbb{Z},b > 0,\frac{a}{b}\] là phân số tối giản). Khi đó a+b bằng:

Xem đáp án » 13/10/2022 98

Câu hỏi mới nhất

Xem thêm »
Xem thêm »