Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

11/07/2024 150

Kí hiệu (H)  là hình phẳng giới hạn bởi đồ thị hàm số \[y = 2(x - 1){e^x}\], trục tung và trục hoành. Tính thể tích V của khối tròn xoay thu được khi quay hình (H)  xung quanh trục Ox .

A.\[V = 4 - 2e\]

B. \[V = \left( {4 - 2e} \right)\pi \]

C. \[V = {e^2} - 5\]

D. \[V = \left( {{e^2} - 5} \right)\pi \]

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Xét giao điểm\[2\left( {x - 1} \right){e^x} = 0 \Leftrightarrow x = 1\]

Thể tích cần tính: \[V = \pi \mathop \smallint \limits_0^1 {\left[ {2\left( {x - 1} \right){e^x}} \right]^2}dx = 4\pi \mathop \smallint \limits_0^1 {\left( {x - 1} \right)^2}{e^{2x}}dx = \pi \left( {{e^2} - 5} \right)\]

(dùng máy tính thử)

Đáp án cần chọn là: D

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x=1 và x=3, biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \[x\;(1 \le x \le 3)\] thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x và \[\sqrt {3{x^2} - 2.} \]

Xem đáp án » 13/10/2022 166

Câu 2:

Cho hình (H) giới hạn bởi đồ thị hàm số y=f(x) , trục hoành và hai đường thẳng x=a,x=b. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Ox là:

Xem đáp án » 13/10/2022 153

Câu 3:

Gọi (D1) là hình phẳng giới hạn bởi các đường \[y = 2\sqrt x ,y = 0\;{\rm{ }}v\`a \;x = 2020,\], (D2) là hình phẳng giới hạn bởi các đường \[y = \sqrt {3x} ,y = 0\] và \[x = 2020.\]. Gọi V1,V2 lần lượt là thể tích khối tròn xoay tạo thành khi quay (D1)  và (D2) xung quanh trục Ox. Tỉ số \(\frac{{{V_1}}}{{{V_2}}}\) bằng:

Xem đáp án » 13/10/2022 147

Câu 4:

Tính thể tích hình xuyến do quay hình tròn  có phương trình \[{x^2} + {\left( {y - 2} \right)^2} = 1\] khi quanh trục Ox..

Xem đáp án » 13/10/2022 135

Câu 5:

Cho hình phẳng (H) giới hạn bởi \[y = \frac{1}{3}{x^3} - {x^2}\;\] và Ox.  Thể tích khối tròn xoay sinh ra khi quay (H)  quanh Ox bằng :

Xem đáp án » 13/10/2022 128

Câu 6:

Gọi V là thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \[y = \sqrt x ,y = 0\;\] và x=4 quanh trục Ox . Đường thẳng \[x = a(0 < a < 4)\;\] cắt đồ thị hàm số \[y = \sqrt x \;\] tại M (hình vẽ bên).

Gọi V là thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường (ảnh 1)

Xem đáp án » 13/10/2022 125

Câu 7:

Cho hai hàm số \[y = {f_1}\left( x \right)\]và\(y = {f_2}\left( x \right)\) liên tục trên đoạn \[\left[ {a;b} \right]\;\]và có đồ thị như hình vẽ bên. Gọi S là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng x=a,x=b. Thể tích V của vật thể tròn xoay tạo thành khi quay S quanh trục Ox được tính bởi công thức nào sau đây ? 

Cho hai hàm số y = f 1 ( x ) và y = f 2 ( x )  liên tục trên đoạn  [ a ; b ] và có đồ thị như hình vẽ bên. Gọi S là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng x=a,x=b. Thể tích V của vật thể tròn xoay tạo thành khi quay S quanh trục Ox được tính bởi công thức nào sau đây ? y = f 1 ( x ) và y = f 2 ( x )  liên tục trên đoạn  [ a ; b ] và có đồ thị như hình vẽ bên. Gọi S là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng x=a,x=b. Thể tích V của vật thể tròn xoay tạo thành khi quay S quanh trục Ox được tính bởi công thức nào sau đây ?  (ảnh 1)

Xem đáp án » 13/10/2022 125

Câu 8:

Cho hình (H) giới hạn bởi đồ thị hàm số \[y = {x^3}\], trục hoành và hai đường thẳng x=0,x=1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Ox được tính bởi:

Xem đáp án » 13/10/2022 123

Câu 9:

Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \[y = {x^2} + 1;x = 0\] và tiếp tuyến của đồ thị hàm số \[y = {x^2} + 1\;\] tại điểm A(1;2) quanh trục Ox là

Xem đáp án » 13/10/2022 116

Câu 10:

Cho hình (H) giới hạn bởi đường cong \[{y^2} + x = 0\], trục Oy và hai đường thẳng y=0,y=1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Oy được tính bởi:

Xem đáp án » 13/10/2022 113

Câu 11:

Cho hình phẳng (H) giới hạn bởi các đường \[y = - {x^2} + 2x\;\] và y=0. Tính thể tích của khối tròn xoay tạo thành khi quay hình (H) quanh trục Oy là

Xem đáp án » 13/10/2022 113

Câu 12:

Cho vật thể V được giới hạn bởi hai mặt phẳng x=a và x=b(a<b), mặt phẳng vuông góc với trục Ox cắt V theo thiết diện S(x). Thể tích của V được tính bởi:

Xem đáp án » 13/10/2022 112

Câu 13:

Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đồ thị \[y = - \,\sqrt {4 - {x^2}} ,\,\,{x^2} + 3y = 0\] quay quanh trục Ox là \[V = \frac{{a\pi \sqrt 3 }}{b}\], với a,b> và \(\frac{a}{b}\) là phân số tối giản. Tính tổng T=a+b.

Xem đáp án » 13/10/2022 110

Câu 14:

Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường  \[y = \sqrt {2 - x} ;y = x\] xung quanh trục Ox được tính theo công thức nào sau đây?

Xem đáp án » 13/10/2022 107

Câu 15:

Cho vật thể V được giới hạn bởi hai mặt phẳng x=0 và x=−2, mặt phẳng vuông góc với trục Ox cắt V theo thiết diện \[S(x) = 2{x^2}\]. Thể tích của V được tính bởi:

Xem đáp án » 13/10/2022 107

Câu hỏi mới nhất

Xem thêm »
Xem thêm »