Gọi (D1) là hình phẳng giới hạn bởi các đường \[y = 2\sqrt x ,y = 0\;{\rm{ }}v\`a \;x = 2020,\], (D2) là hình phẳng giới hạn bởi các đường \[y = \sqrt {3x} ,y = 0\] và \[x = 2020.\]. Gọi V1,V2 lần lượt là thể tích khối tròn xoay tạo thành khi quay (D1) và (D2) xung quanh trục Ox. Tỉ số \(\frac{{{V_1}}}{{{V_2}}}\) bằng:
A.\[\frac{4}{3}\]
B. \[\frac{{2\sqrt 3 }}{3}\]
C. \[\frac{2}{3}\]
D. \[\frac{{\sqrt 6 }}{3}\]
Ta có: (D1) là hình phẳng giới hạn bởi các đường\[y = 2\sqrt x ,\,\,y = 0\] và\[x = 2020,\]
\[ \Rightarrow {V_1} = \pi \mathop \smallint \limits_0^{2020} \left| {{{\left( {2\sqrt x } \right)}^2}} \right|dx = \pi \int\limits_0^{2020} {4xdx = 2\pi {x^2}} \left| {_0^{2020}} \right. = 2\pi {.2020^2}.\]
\[\left( {{D_2}} \right)\] là hình phẳng giới hạn bởi các đường\[y = \sqrt {3x} ,\,\,y = 0\] và\[x = 2020\]
\[ \Rightarrow {V_2} = \pi \mathop \smallint \limits_0^{2020} \left| {{{\left( {\sqrt {3x} } \right)}^2}} \right|dx = \pi \int\limits_0^{2020} {3xdx = \frac{3}{2}\pi {x^2}} \left| {_0^{2020}} \right. = \frac{3}{2}\pi {.2020^2}.\]
\[ \Rightarrow \frac{{{V_1}}}{{{V_2}}} = \frac{{2\pi {{.2020}^2}}}{{\frac{3}{2}\pi {{.2020}^2}}} = \frac{4}{3}.\]
Đáp án cần chọn là: A
Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x=1 và x=3, biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \[x\;(1 \le x \le 3)\] thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x và \[\sqrt {3{x^2} - 2.} \]
Cho hình (H) giới hạn bởi đồ thị hàm số y=f(x) , trục hoành và hai đường thẳng x=a,x=b. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Ox là:
Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số \[y = 2(x - 1){e^x}\], trục tung và trục hoành. Tính thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox .
Tính thể tích hình xuyến do quay hình tròn có phương trình \[{x^2} + {\left( {y - 2} \right)^2} = 1\] khi quanh trục Ox..
Cho hình phẳng (H) giới hạn bởi \[y = \frac{1}{3}{x^3} - {x^2}\;\] và Ox. Thể tích khối tròn xoay sinh ra khi quay (H) quanh Ox bằng :
Gọi V là thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \[y = \sqrt x ,y = 0\;\] và x=4 quanh trục Ox . Đường thẳng \[x = a(0 < a < 4)\;\] cắt đồ thị hàm số \[y = \sqrt x \;\] tại M (hình vẽ bên).
Cho hai hàm số \[y = {f_1}\left( x \right)\]và\(y = {f_2}\left( x \right)\) liên tục trên đoạn \[\left[ {a;b} \right]\;\]và có đồ thị như hình vẽ bên. Gọi S là hình phẳng giới hạn bởi hai đồ thị trên và các đường thẳng x=a,x=b. Thể tích V của vật thể tròn xoay tạo thành khi quay S quanh trục Ox được tính bởi công thức nào sau đây ?
Cho hình (H) giới hạn bởi đồ thị hàm số \[y = {x^3}\], trục hoành và hai đường thẳng x=0,x=1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Ox được tính bởi:
Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \[y = {x^2} + 1;x = 0\] và tiếp tuyến của đồ thị hàm số \[y = {x^2} + 1\;\] tại điểm A(1;2) quanh trục Ox là
Cho hình (H) giới hạn bởi đường cong \[{y^2} + x = 0\], trục Oy và hai đường thẳng y=0,y=1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Oy được tính bởi:
Cho hình phẳng (H) giới hạn bởi các đường \[y = - {x^2} + 2x\;\] và y=0. Tính thể tích của khối tròn xoay tạo thành khi quay hình (H) quanh trục Oy là
Cho vật thể V được giới hạn bởi hai mặt phẳng x=a và x=b(a<b), mặt phẳng vuông góc với trục Ox cắt V theo thiết diện S(x). Thể tích của V được tính bởi:
Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đồ thị \[y = - \,\sqrt {4 - {x^2}} ,\,\,{x^2} + 3y = 0\] quay quanh trục Ox là \[V = \frac{{a\pi \sqrt 3 }}{b}\], với a,b> và \(\frac{a}{b}\) là phân số tối giản. Tính tổng T=a+b.
Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \[y = \sqrt {2 - x} ;y = x\] xung quanh trục Ox được tính theo công thức nào sau đây?
Cho vật thể V được giới hạn bởi hai mặt phẳng x=0 và x=−2, mặt phẳng vuông góc với trục Ox cắt V theo thiết diện \[S(x) = 2{x^2}\]. Thể tích của V được tính bởi: