Cho số phức \[z = 1 + \sqrt 3 i\]. Khi đó
A.\[\frac{1}{z} = \frac{1}{2} - \frac{{\sqrt 3 }}{2}i\]
B. \[\frac{1}{z} = \frac{1}{2} + \frac{{\sqrt 3 }}{2}i\]
C. \[\frac{1}{z} = \frac{1}{4} + \frac{{\sqrt 3 }}{4}i\]
D. \[\frac{1}{z} = \frac{1}{4} - \frac{{\sqrt 3 }}{4}i\]
Ta có:\[z = 1 + \sqrt 3 i \Rightarrow \frac{1}{z} = \frac{1}{{1 + \sqrt 3 i}} = \frac{{1 - \sqrt 3 i}}{{(1 - \sqrt 3 i)(1 + \sqrt 3 i)}}\]
\[ = \frac{{1 - \sqrt 3 i}}{{{1^2} - {{(\sqrt 3 i)}^2}}} = \frac{{1 - \sqrt 3 i}}{4} = \frac{1}{4} - \frac{{\sqrt 3 }}{4}i\]
Đáp án cần chọn là: D
Xét số phức z thỏa mãn \[\left| {z + 2 - i} \right| + \left| {z - 4 - 7i} \right| = 6\sqrt 2 \]. Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \[\left| {z - 1 + i} \right|.\]Tính P=m+M.
Tìm các số thực x,y thỏa mãn đẳng thức \[3x + y + 5xi = 2y - (x - y)i.\]
Cho hai số phức \[{z_1},\,\,{z_2}\] thỏa mãn \[{z_1}\overline {.{z_1}} = 4,\left| {{z_2}} \right| = 3\]. Giá trị biểu thức \[P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\;\] bằng:
Cho số phức \[z = 3 - 2i\]. Tìm phần thực và phần ảo của số phức \(\overline z \)
Cho số phức z thỏa mãn \[2iz + \overline z = 1 - i.\]Phần thực của số phức z là:
Biết rằng là một số thực. Giá trị của biểu thức \[1 + z + {z^2} + ... + {z^{2019}}\] bằng
Có bao nhiêu số phức \[z = a + bi\] với a,b tự nhiên thuộc đoạn \[\left[ {2;9} \right]\;\]và tổng a+b chia hết cho 3?
Cho \[{z_1} = 2 + i;\,\,{z_2} = 1 - 3i.\]. Tính \[A = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}.\]
Có bao nhiêu số phức z thỏa mãn \[|z| = 1\;\]và \[\mid {z^3} + 2024z + \overline z \mid - 2\sqrt 3 \mid z + \overline z \mid = 2019\]