Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

20/07/2024 132

Trong không gian Oxyz, cho hai điểm A(2;−2;4);B(−3;3;−1) và mặt phẳng (P):2x−y+2z−8=0. Xét điểm M là điểm thay đổi thuộc (P), giá trị nhỏ nhất của \[2M{A^2} + 3M{B^2}\;\]bằng:

A.135

Đáp án chính xác

B.105

C.108

D.145

Trả lời:

verified Giải bởi Vietjack

Gọi I(a;b;c) là điểm thỏa mãn đẳng thức : \[2\overrightarrow {IA} + 3\overrightarrow {IB} = \vec 0\]

\[ \Rightarrow 2(2 - a; - 2 - b;4 - c) + 3( - 3 - a;3 - b; - 1 - c) = \overrightarrow 0 \]

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{4 - 2a - 9 - 3a = 0}\\{ - 4 - 2b + 9 - 3b = 0}\\{8 - 2c - 3 - 3c = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 5a - 5 = 0}\\{ - 5b + 5 = 0}\\{ - 5c + 5 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 1}\\{c = 1}\end{array}} \right. \Rightarrow I( - 1;1;1)\)

Ta có :

\[\begin{array}{*{20}{l}}{2M{A^2} + 3M{B^2} = 2{{\overrightarrow {MA} }^2} + 3{{\overrightarrow {MB} }^2}}\\{ = 2{{\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)}^2} + 3{{\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)}^2}}\\{ = 5M{I^2} + \left( {2I{A^2} + 3I{B^2}} \right) + \overrightarrow {MI} \left( {2\overrightarrow {IA} + 3\overrightarrow {IB} } \right)}\\{ = 5M{I^2} + \left( {2I{A^2} + 3I{B^2}} \right)}\end{array}\]

Do I, A, B cố định nên\[2I{A^2} + 3I{B^2} = const\]

\[ \Rightarrow {\left( {2M{A^2} + 3M{B^2}} \right)_{\min }} \Leftrightarrow 5M{I^2}_{\min }\]⇔ M là hình chiếu của I trên (P)

Gọi \[\left( {\rm{\Delta }} \right)\]là đường thẳng đi qua I vuông góc với (P) , ta có phương trình của

\(\left( \Delta \right):\left\{ {\begin{array}{*{20}{c}}{x = - 1 + 2t}\\{y = 1 - t}\\{z = 1 + 2t}\end{array}} \right.\)

M là hình chiếu của I lên (P) \[ \Rightarrow M \in \left( {\rm{\Delta }} \right) \Rightarrow M\left( { - 1 + 2t;1 - t;1 + 2t} \right)\]

Lại có\[M \in \left( P \right)\]

\[\begin{array}{*{20}{l}}{ \Rightarrow 2\left( { - 1 + 2t} \right) - \left( {1 - t} \right) + 2\left( {1 + 2t} \right) - 8 = 0}\\{ \Leftrightarrow - 2 + 4t - 1 + t + 2 + 4t - 8 = 0}\\{ \Leftrightarrow 9t - 9 = 0 \Leftrightarrow t = 1 \Rightarrow M\left( {1;0;3} \right)}\end{array}\]

Khi đó ta có

\[\begin{array}{*{20}{l}}{M{I^2} = 4 + 1 + 4 = 9;\;\;\;I{A^2} = 9 + 9 + 9 = 27;\;\;\;I{B^2} = 4 + 4 + 4 = 13}\\{ \Rightarrow {{\left( {2M{A^2} + 3M{B^2}} \right)}_{\min }} = 5.9 + 2.27 + 3.12 = 135}\end{array}\]

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+2y=0. Phương trình nào sau đây là phương trình đường thẳng qua A(−1;3;−4) cắt trục Ox và song song với mặt phẳng (P):

Xem đáp án » 13/10/2022 199

Câu 2:

Đề thi THPT QG - 2021 - mã 101

Trong không gian Oxyz, cho điểm M(−1;3;2) và mặt phẳng (P):x−2y+4z+1=0. Đường thẳng đi qua M và vuông góc với (P) có phương trình là

Xem đáp án » 13/10/2022 186

Câu 3:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+2y−3z+4=0 và đường thẳng\[d:\frac{{x + 2}}{1} = \frac{{y - 2}}{1} = \frac{z}{{ - 1}}.\]Đường thẳng Δ nằm trong (P) đồng thời cắt và vuông góc với d có phương trình:

Xem đáp án » 13/10/2022 178

Câu 4:

Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm M(2;1;1), cắt và vuông góc với đường thẳng \[\Delta :\frac{{x - 2}}{{ - 2}} = \frac{{y - 8}}{1} = \frac{z}{1}\]. Tìm tọa độ giao điểm của d và mặt phẳng (Oyz).

Xem đáp án » 13/10/2022 140

Câu 5:

Cho đường thẳng d có phương trình \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 1 - t}\\{z = 3 + t}\end{array}} \right.\) và mặt phẳng (P) có phương trình \[(P):x + y + z - 10 = 0\]. Trong các khẳng định sau, khẳng định nào đúng?

Xem đáp án » 13/10/2022 132

Câu 6:

Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (P) đi qua hai điểm A(1;1;2),B(0;−1;1)  và song song với đường thẳng \[d:\frac{{x - 1}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{z}{2}\;\] là:

Xem đáp án » 13/10/2022 132

Câu 7:

Cho đường thẳng \[d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 2}} = \frac{z}{3}\] và mặt phẳng \[\left( P \right):x + y - z - 3 = 0\]. Tọa độ giao điểm của d và (P) là:

Xem đáp án » 13/10/2022 127

Câu 8:

Trong không gian với hệ tọa độ Oxyz, cho d là đường thẳng đi qua điểm A(1;2;3) và vuông góc với mặt phẳng \[(\alpha ):4x + 3y - 7z + 1 = 0\]. Phương trình tham số của d là:

Xem đáp án » 13/10/2022 126

Câu 9:

Trong không gian với hệ tọa độ Oxyz, cho cho mặt phẳng (P):x−2y+3z−1=0 và đường thẳng \[d:\frac{{x - 1}}{3} = \frac{{y - 2}}{3} = \frac{{z - 3}}{1}\]. Khẳng định nào sau đây đúng:

Xem đáp án » 13/10/2022 117

Câu 10:

Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(4;−3;5) và B(2;−5;1).Viết phương trình mặt phẳng (P) đi qua trung điểm I của đoạn thẳng AB và vuông góc với đường thẳng \[\left( d \right):\frac{{x + 1}}{3} = \frac{{y - 5}}{{ - 2}} = \frac{{z + 9}}{{13}}\].

Xem đáp án » 13/10/2022 116

Câu 11:

Cho \[d:\frac{{x + 1}}{2} = \frac{{y - 3}}{m} = \frac{{z - 1}}{{m - 2}};\,\,\,(P):x + 3y + 2z - 5 = 0\]. Tìm m để d và (P) vuông góc với nhau.

Xem đáp án » 13/10/2022 114

Câu 12:

Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;1;1),B(4;1;0) và C(−1;4;−1).  Mặt phẳng (P) nào dưới đây chứa đường thẳng AB mà khoảng cách từ C đến (P) bằng \(\sqrt {14} \).

Xem đáp án » 13/10/2022 114

Câu 13:

Trong không gian với hệ tọa độ Oxyz cho tứ diện ABCD có các đỉnh A(1;2;1),B(−2;1;3),C(2;−1;1),D(0;3;1). Phương trình mặt phẳng (P) đi qua hai điểm A,B sao cho C,D cùng phía so với (P) và khoảng cách từ C đến (P) bằng khoảng cách từ D đến (P) là:

Xem đáp án » 13/10/2022 111

Câu 14:

Trong không gian Oxyz, cho đường thẳng  \[d:\frac{x}{{ - 2}} = \frac{{y - 1}}{1} = \frac{z}{1}\;\] và mặt phẳng (P):2x−y+2z−2=0. Có bao nhiêu điểm M thuộc d  sao cho M cách đều gốc tọa độ O và mặt phẳng (P)?

Xem đáp án » 13/10/2022 111

Câu 15:

Trong không gian với hệ tọa độ Oxyz cho mặt phẳng \[\left( \alpha \right):4x + 3y - 7z + 3 = 0\;\]và điểm I(0;1;1). Phương trình mặt phẳng \[\left( \beta \right)\;\]đối xứng với \[\left( \alpha \right)\;\]qua I là:

Xem đáp án » 13/10/2022 106

Câu hỏi mới nhất

Xem thêm »
Xem thêm »