Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm M(2;1;1), cắt và vuông góc với đường thẳng \[\Delta :\frac{{x - 2}}{{ - 2}} = \frac{{y - 8}}{1} = \frac{z}{1}\]. Tìm tọa độ giao điểm của d và mặt phẳng (Oyz).
A.(1;0;0).
B.(0;−5;3).
C.(0;3;−5).
D.(0;−3;1).
Gọi\[N = d \cap {\rm{\Delta }}\]. Giả sử\[N\left( {2 - 2t;\,\,8 + t;\,\,t} \right) \Rightarrow \overrightarrow {MN} = \left( { - 2t;\,\,7 + t;\,\,t - 1} \right)\]
Đường thẳng\[{\rm{\Delta }}:\,\,\frac{{x - 2}}{{ - 2}} = \frac{{y - 8}}{1} = \frac{z}{1}\] có 1 VTCP là\[\overrightarrow {{u_{\rm{\Delta }}}} = \left( { - 2;1;1} \right)\] đường thẳng d nhận\[\overrightarrow {MN} \] là 1 VTPT.
Do\[d \bot {\rm{\Delta }}\] nên\[\overrightarrow {MN} .\overrightarrow {{u_{\rm{\Delta }}}} = 0\]
\[\begin{array}{*{20}{l}}{ \Leftrightarrow - 2t.\left( { - 2} \right) + \left( {7 + t} \right).1 + \left( {t - 1} \right).1 = 0}\\{ \Leftrightarrow 6t + 6 = 0 \Leftrightarrow t = - 1}\\{ \Rightarrow \overrightarrow {MN} = \left( {2;6; - 2} \right)}\end{array}\]
⇒ Đường thẳng dd đi qua M(2;1;1) và có 1 VTCP\[\overrightarrow {{u_d}} = \frac{1}{2}\overrightarrow {MN} = \left( {1;3; - 1} \right)\] có phương trình là:\(\left\{ {\begin{array}{*{20}{c}}{x = 2 + t'}\\{y = 1 + 3t'}\\{z = 1 - t'}\end{array}} \right.\)
Khi đó, giao điểm của d và mặt phẳng (Oyz) ứng với t′ thỏa mãn
\[x = 2 + t' = 0 \Leftrightarrow t' = - 2\]
⇒ Tọa độ giao điểm của d và mặt phẳng (Oyz) là: (0;−5;3).
Đáp án cần chọn là: B
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+2y=0. Phương trình nào sau đây là phương trình đường thẳng qua A(−1;3;−4) cắt trục Ox và song song với mặt phẳng (P):
Đề thi THPT QG - 2021 - mã 101
Trong không gian Oxyz, cho điểm M(−1;3;2) và mặt phẳng (P):x−2y+4z+1=0. Đường thẳng đi qua M và vuông góc với (P) có phương trình là
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+2y−3z+4=0 và đường thẳng\[d:\frac{{x + 2}}{1} = \frac{{y - 2}}{1} = \frac{z}{{ - 1}}.\]Đường thẳng Δ nằm trong (P) đồng thời cắt và vuông góc với d có phương trình:
Cho đường thẳng d có phương trình \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 1 - t}\\{z = 3 + t}\end{array}} \right.\) và mặt phẳng (P) có phương trình \[(P):x + y + z - 10 = 0\]. Trong các khẳng định sau, khẳng định nào đúng?
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (P) đi qua hai điểm A(1;1;2),B(0;−1;1) và song song với đường thẳng \[d:\frac{{x - 1}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{z}{2}\;\] là:
Trong không gian Oxyz, cho hai điểm A(2;−2;4);B(−3;3;−1) và mặt phẳng (P):2x−y+2z−8=0. Xét điểm M là điểm thay đổi thuộc (P), giá trị nhỏ nhất của \[2M{A^2} + 3M{B^2}\;\]bằng:
Cho đường thẳng \[d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 2}} = \frac{z}{3}\] và mặt phẳng \[\left( P \right):x + y - z - 3 = 0\]. Tọa độ giao điểm của d và (P) là:
Trong không gian với hệ tọa độ Oxyz, cho d là đường thẳng đi qua điểm A(1;2;3) và vuông góc với mặt phẳng \[(\alpha ):4x + 3y - 7z + 1 = 0\]. Phương trình tham số của d là:
Trong không gian với hệ tọa độ Oxyz, cho cho mặt phẳng (P):x−2y+3z−1=0 và đường thẳng \[d:\frac{{x - 1}}{3} = \frac{{y - 2}}{3} = \frac{{z - 3}}{1}\]. Khẳng định nào sau đây đúng:
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(4;−3;5) và B(2;−5;1).Viết phương trình mặt phẳng (P) đi qua trung điểm I của đoạn thẳng AB và vuông góc với đường thẳng \[\left( d \right):\frac{{x + 1}}{3} = \frac{{y - 5}}{{ - 2}} = \frac{{z + 9}}{{13}}\].
Cho \[d:\frac{{x + 1}}{2} = \frac{{y - 3}}{m} = \frac{{z - 1}}{{m - 2}};\,\,\,(P):x + 3y + 2z - 5 = 0\]. Tìm m để d và (P) vuông góc với nhau.
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;1;1),B(4;1;0) và C(−1;4;−1). Mặt phẳng (P) nào dưới đây chứa đường thẳng AB mà khoảng cách từ C đến (P) bằng \(\sqrt {14} \).
Trong không gian Oxyz, cho đường thẳng \[d:\frac{x}{{ - 2}} = \frac{{y - 1}}{1} = \frac{z}{1}\;\] và mặt phẳng (P):2x−y+2z−2=0. Có bao nhiêu điểm M thuộc d sao cho M cách đều gốc tọa độ O và mặt phẳng (P)?
Trong không gian với hệ tọa độ Oxyz cho tứ diện ABCD có các đỉnh A(1;2;1),B(−2;1;3),C(2;−1;1),D(0;3;1). Phương trình mặt phẳng (P) đi qua hai điểm A,B sao cho C,D cùng phía so với (P) và khoảng cách từ C đến (P) bằng khoảng cách từ D đến (P) là:
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng \[\left( \alpha \right):4x + 3y - 7z + 3 = 0\;\]và điểm I(0;1;1). Phương trình mặt phẳng \[\left( \beta \right)\;\]đối xứng với \[\left( \alpha \right)\;\]qua I là: