Gọi x (công việc) là phần công việc tổ 1 làm được trong 1 giờ (x > 0).
Gọi y (công việc) là phần công việc tổ 2 làm được trong 1 giờ (y > 0).
3 giờ 36 phút = 3,6 giờ.
Nếu cả hai tổ cùng làm thì sau 3 giờ 36 phút giờ sẽ xong nên
3,6x + 3,6y = 1 (1)
Nếu tổ 1 làm trong 2 giờ, tổ 2 làm trong 3 giờ thì được công việc nên
2x + 3y = (2)
Từ (1) và (2) ta có hệ phương trình
(thỏa mãn)
Ta có:
Tổ 1 mỗi giờ làm được công việc nên một mình tổ 1 sẽ hoàn thành công việc trong 6 giờ.
Tổ 2 mỗi giờ làm được công việc nên một mình tổ 2 sẽ hoàn thành công việc trong 9 giờ.
Vậy tổ 1 làm một mình thì xong công việc trong 6 giờ, tổ 2 làm một mình thì xong công việc trong 9 giờ.
Cho phương trình x2 – 2(m − 3)x + 4m – 16 = 0 (m là tham số)
a) Tìm m để phương trình có nghiệm x = 3. Giải phương trình với giá trị m vừa tìm được.
b) Chứng minh rằng phương trình luôn có nghiệm với mọi m.
c) Tìm m để phương trình có ít nhất một nghiệm âm.
Cho đường tròn (O; R) đường kính AB và điểm I cố định nằm giữa A và O. Dây CD vuông góc với AB tại I. Gọi E là điểm tùy ý thuộc dây CD (E không trùng với C, D). Tia AE cắt (O) tại F.
a) Chứng minh tứ giác BIEF nội tiếp.
b) Chứng minh: AC2 = AI.AB = AE.AF .
c) Kẻ đường kính CM của (O); kẻ dây DN vuông góc với FM. Chứng minh CN = DF.
d) Gọi giao điểm của CN và DF là K. Chứng minh rằng giao điểm của OK với BC là tâm đường tròn ngoại tiếp tam giác CEF.
Biết rằng m, n là các số thực dương để phương trình ẩn x sau có nghiệm:
x2 – 4x + n(m – 1) + 5 = 0.
Tìm giá trị nhỏ nhất của biểu thức: .