Nếu 3cosx + 2 sinx = 2 và sinx < 0 thì giá trị đúng của sinx là:
A. \[ - \frac{5}{{13}}\];
B. \[ - \frac{7}{{13}}\];
C. \[ - \frac{9}{{13}}\];
D. \[ - \frac{{12}}{{13}}\].
Đáp án đúng là: A
Ta có: 3cosx + 2 sinx = 2
\[ \Leftrightarrow \](3cosx + 2 sinx)2 = 4
\[ \Leftrightarrow \]9cos2x + 12cosx.sinx + 4sin2x = 4(sin2x + cos2x)
\[ \Leftrightarrow \]5cos2x + 12cosx.sinx = 0
\[ \Leftrightarrow \]cosx(5cosx + 12sinx) = 0
\[ \Leftrightarrow \left[ \begin{array}{l}{\rm{cos}}x = 0\\5{\rm{cos}}x + 12\sin x = 0\end{array} \right.\]
Với cosx = 0\[ \Rightarrow \] sinx = 1 loại vì sinx < 0.
Với 5cosx + 12sinx = 0, ta có hệ phương trình: \[\left\{ \begin{array}{l}5{\rm{cos}}x + 12\sin x = 0\\3\cos x + 2\sin x = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\sin x = - \frac{5}{{13}}\\{\rm{cos}}x = \frac{{12}}{{13}}\end{array} \right.\].
Vậy \[\sin x = - \frac{5}{{13}}\].
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Hình bình hành có hai cạnh là 3 và 5, một đường chéo bằng 5. Tìm độ dài đường chéo còn lại.
Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
Cho tam giác ABC có a = 2, \[b = \sqrt 6 \], \[c = \sqrt 3 + 1\]. Tính bán kính R của đường tròn ngoại tiếp.
Cho tan α = 2. Giá trị của \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) là :
Biết tanα = 2, giá trị của biểu thức \(M = \frac{{3\sin \alpha - 2\cos \alpha }}{{5\cos \alpha + 7\sin \alpha }}\) bằng: