Cho hệ phương trình \[\left\{ \begin{array}{l}x - y = 2\\ - x + 4y = 9\end{array} \right.,\] cặp số nào sau đây là nghiệm của hệ phương trình đã cho?
A. \[\left( {17; - 11} \right).\]
B. \[\left( {\frac{{17}}{3};\frac{{11}}{3}} \right).\]
C. \[\left( {\frac{{11}}{3};\frac{{17}}{3}} \right).\]
D. \[\left( { - 11;0} \right).\]
Đáp án đúng là: B
⦁ Thay \[x = \frac{{17}}{3};y = \frac{{11}}{3}\] vào mỗi phương trình trong hệ, ta được:
\[\frac{{17}}{3} - \frac{{11}}{3} = 2\] (đúng);
\[ - \frac{{17}}{3} + 4 \cdot \frac{{11}}{3} = 9\] (đúng).
Do đó cặp số \[\left( {\frac{{17}}{3};\frac{{11}}{3}} \right)\] là nghiệm của từng phương trình trong hệ.
Vì vậy cặp số \[\left( {\frac{{17}}{3};\frac{{11}}{3}} \right)\] là nghiệm của hệ phương trình đã cho.
⦁ Thay \[x = 17,y = - 11\] vào phương trình \[x - y = 2,\] ta được: \[17 - \left( { - 11} \right) = 28 \ne 2.\]
Suy ra cặp số \[\left( {17; - 11} \right)\] không là nghiệm của phương trình thứ nhất trong hệ.
Do đó cặp số \[\left( {17; - 11} \right)\] không là nghiệm của hệ phương trình đã cho.
Tương tự, thay lần lượt các cặp số \[\left( {\frac{{11}}{3};\frac{{17}}{3}} \right)\] và \[\left( { - 11;0} \right)\] vào hệ phương trình đã cho, ta cũng thấy rằng các cặp số này không phải là nghiệm của hệ phương trình đó.
Vậy ta chọn phương án B.
II. Thông hiểu
Tất cả các nghiệm của phương trình \[4x + 2y - 6 = 0\] được biểu diễn bởi đường thẳng nào sau đây?
Cặp số nào sau đây là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}2\left( {x + y} \right) - 3\left( {x - y} \right) = 5\\ - \left( {x + y} \right) + 4\left( {x + y} \right) = - 10\end{array} \right.?\]
Cho hai số tự nhiên có tổng bằng \[155,\] biết rằng nếu lấy số lớn chia cho số bé thì được thương là \[5\] và số dư là \[17.\] Gọi số bé là \[x,\] số lớn là \[y\] (với \[x,y \in \mathbb{N}\] và \(x < y)\). Khi đó hệ phương trình bậc nhất hai ẩn \[x\] và \[y\] là
</>
Trong các hệ phương trình sau, hệ phương trình nào là hệ phương trình bậc nhất hai ẩn?
Với giá trị nào của \[{y_0}\] để cặp số \[\left( {1;{y_0}} \right)\] là nghiệm của phương trình \[ - 5x + 2y = 15?\]
Hệ phương trình nào sau đây có nghiệm là \[\left( {2; - 3} \right)?\]
Cho hệ phương trình \[\left\{ \begin{array}{l}x - 7y = m\\ - mx + 2y = 9\end{array} \right..\] Khi \[m = 1\] thì hệ phương trình đã cho có nghiệm là
I. Nhận biết
Trong các hệ thức sau, hệ thức nào không phải là phương trình bậc nhất hai ẩn?
Hệ số \[a,\,\,b,\,\,c\] tương ứng của phương trình bậc nhất hai ẩn \[2x - 4y = - 1\] là
Hai điểm \[P\left( {2;8} \right),Q\left( { - 1;26} \right)\] cùng thuộc đường thẳng nào sau đây?
III. Vận dụng
Cho phương trình \[3x + \left( {{m^2} + m} \right)y = 6\] có nghiệm \[\left( { - 2;6} \right)\]. Có bao nhiêu giá trị \(m\) thỏa mãn điều kiện trên?
Cặp số \[\left( { - 2;3} \right)\] là nghiệm của phương trình nào sau đây?
Phương trình \[3x - 2y = 1\] luôn nhận cặp số nào sau đây là nghiệm khi \[m\] thay đổi?