Cho hệ phương trình \[\left\{ \begin{array}{l}x - 7y = m\\ - mx + 2y = 9\end{array} \right..\] Khi \[m = 1\] thì hệ phương trình đã cho có nghiệm là
A. \[\left( {13;2} \right).\]
B. \[\left( { - 13; - 2} \right)\].
C. \[\left( {13; - 2} \right)\].
D. \[\left( {2; - 13} \right).\]
Đáp án đúng là: B
Với \[m = 1,\] hệ phương trình trở thành: \[\left\{ \begin{array}{l}x - 7y = 1\\ - x + 2y = 9\end{array} \right.\] (I)
⦁ Thay \[x = 13,y = 2\] vào từng phương trình trong hệ (I), ta được:
\[13 - 7 \cdot 2 = - 1 \ne 1.\]
\[ - 13 + 2 \cdot 2 = - 9 \ne 9.\]
Do đó cặp số \[\left( {13;2} \right)\] không là nghiệm của hệ (I).
⦁ Tương tự như vậy, ta thu được các cặp số \[\left( {13; - 2} \right),\left( {2; - 13} \right)\] không là nghiệm của hệ (I).
⦁ Thay \[x = - 13,y = - 2\] vào từng phương trình trong hệ (I), ta được:
\[ - 13 - 7 \cdot \left( { - 2} \right) = 1\] (đúng);
\[ - \left( { - 13} \right) + 2 \cdot \left( { - 2} \right) = 9\] (đúng).
Do đó cặp số \[\left( { - 13; - 2} \right)\] là nghiệm của hệ (I).
Vì vậy khi \[m = 1\] thì hệ phương trình đã cho có nghiệm là \[\left( { - 13; - 2} \right).\]
Vậy ta chọn phương án B.
Cặp số nào sau đây là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}2\left( {x + y} \right) - 3\left( {x - y} \right) = 5\\ - \left( {x + y} \right) + 4\left( {x + y} \right) = - 10\end{array} \right.?\]
Trong các hệ phương trình sau, hệ phương trình nào là hệ phương trình bậc nhất hai ẩn?
Với giá trị nào của \[{y_0}\] để cặp số \[\left( {1;{y_0}} \right)\] là nghiệm của phương trình \[ - 5x + 2y = 15?\]
I. Nhận biết
Trong các hệ thức sau, hệ thức nào không phải là phương trình bậc nhất hai ẩn?
Hệ số \[a,\,\,b,\,\,c\] tương ứng của phương trình bậc nhất hai ẩn \[2x - 4y = - 1\] là
II. Thông hiểu
Tất cả các nghiệm của phương trình \[4x + 2y - 6 = 0\] được biểu diễn bởi đường thẳng nào sau đây?
Hai điểm \[P\left( {2;8} \right),Q\left( { - 1;26} \right)\] cùng thuộc đường thẳng nào sau đây?
Hệ phương trình nào sau đây có nghiệm là \[\left( {2; - 3} \right)?\]
III. Vận dụng
Cho phương trình \[3x + \left( {{m^2} + m} \right)y = 6\] có nghiệm \[\left( { - 2;6} \right)\]. Có bao nhiêu giá trị \(m\) thỏa mãn điều kiện trên?
Phương trình \[3x - 2y = 1\] luôn nhận cặp số nào sau đây là nghiệm khi \[m\] thay đổi?
Cho hai số tự nhiên có tổng bằng \[155,\] biết rằng nếu lấy số lớn chia cho số bé thì được thương là \[5\] và số dư là \[17.\] Gọi số bé là \[x,\] số lớn là \[y\] (với \[x,y \in \mathbb{N}\] và \(x < y)\). Khi đó hệ phương trình bậc nhất hai ẩn \[x\] và \[y\] là
</>
Cặp số \[\left( { - 2;3} \right)\] là nghiệm của phương trình nào sau đây?
Cho hệ phương trình \[\left\{ \begin{array}{l}x - y = 2\\ - x + 4y = 9\end{array} \right.,\] cặp số nào sau đây là nghiệm của hệ phương trình đã cho?