Cho hai điểm A, B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức là
A. đường trung trực của đoạn thẳng AB
B. đường tròn đường kính AB
C. đường trung trực đoạn thẳng IA
D. đường tròn tâm A; bán kính AB.
Chọn điểm E thuộc đoạn AB sao cho EB = 2EA
Chọn điểm F thuộc đoạn AB sao cho FA = 2FB
Ta có
Vì E ; F là hai điểm cố định nên từ đẳng thức (*) suy ra tập hợp các điểm M là trung trực của đoạn thẳng EF.
Gọi I là trung điểm của AB suy ra I cũng là trung điểm của EF
Vậy tập hợp các điểm M thỏa mãn là đường trung trực của đoạn thẳng AB.
Chọn A.
Cho tam giác ABC có trực tâm H. Gọi D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây đúng?
Cho hình chữ nhật ABCD và số thực k> 0. Tập hợp các điểm M thỏa mãn đẳng thức
Cho hình bình hành ABCD có M là trung điểm của AB. Khẳng định nào sau đây đúng?
Cho tam giác ABC và điểm M thỏa mãn Khẳng định nào sau đây là đúng?
Cho hình thang ABCD có đáy là AB và CD. Gọi M và N lần lượt là trung điểm của AD và BC. Khẳng định nào sau đây sai?
Cho tam giác ABC và một điểm M tùy ý. Mệnh đề nào sau đây đúng?
Cho đa giác lồi n cạnh. Có bao nhiêu vectơ khác mà giá của chúng tương ứng chứa các đường chéo của đa giác đã cho?
Cho tam giác ABC với AB = c, BC = a, CA = b. Gọi CM là đường phân giác trong của góc C (M∈AB). Biểu thị nào sau đây là đúng?
Cho tam giác đều ABC và điểm I thỏa mãn Mệnh đề nào sau đây đúng?