Hàm số \[y = {\left( {{x^2} + 1} \right)^3}\] có đạo hàm cấp ba là:
A.\[y''' = 12x\left( {{x^2} + 1} \right)\]
B. \[y''' = 24x\left( {{x^2} + 1} \right)\]
C. \[y''' = 24x\left( {5{x^2} + 3} \right)\]
D. \[y''' = - 12x\left( {{x^2} + 1} \right)\]
Cách 1:
\[\begin{array}{*{20}{l}}{ch{\rm{ }}1:}\\\begin{array}{l}y\prime = 3{({x^2} + 1)^2}({x^2} + 1)\prime = 6x{({x^2} + 1)^2}\\y\prime \prime = 6{({x^2} + 1)^2} + 6x.2({x^2} + 1).2x\\ = 6{({x^2} + 1)^2} + 24{x^2}({x^2} + 1)\\y\prime \prime \prime = 12({x^2} + 1).2x + 24.2x.({x^2} + 1) + 24{x^2}.2x\\ = 24x({x^2} + 1) + 48x({x^2} + 1) + 48{x^3}\\ = 24x({x^2} + 1 + 2({x^2} + 1) + 2{x^2}) = 24x(5{x^2} + 3)\end{array}\end{array}\]
Cách 2:
\[\begin{array}{*{20}{l}}{y = {{\left( {{x^2} + 1} \right)}^3} = {x^6} + 3{x^4} + 3{x^2} + 1}\\{y' = 6{x^5} + 12{x^3} + 6x}\\{y'' = 30{x^4} + 36{x^2} + 6}\\{y''' = 120{x^3} + 72x = 24x\left( {5{x^2} + 3} \right)}\end{array}\]
Đáp án cần chọn là: C
Xét \[y = f\left( x \right) = \cos \left( {2x - \frac{\pi }{3}} \right)\] Phương trình \[{f^{\left( 4 \right)}}\left( x \right) = - 8\;\]có nghiệm \[x \in \left[ {0;\frac{\pi }{2}} \right]\;\] là:
Cho hàm số \[y = {\left( {{x^2} - 1} \right)^2}.\]. Tính giá trị biểu thức \[M = {y^{\left( 4 \right)}} + 2xy''' - 4y''\]
Cho hàm số \[y = f\left( x \right) = - \frac{1}{x}\]. Xét hai mệnh đề:
(I): \[y\prime \prime = f\prime \prime (x) = \frac{2}{{{x^3}}}\]
(II): \[y\prime \prime \prime = f\prime \prime \prime (x) = - \frac{6}{{{x^4}}}\]
Mệnh đề nào đúng?
Cho hàm số \[y = 3{x^5} - 5{x^4} + 3x - 2\]. Giải bất phương trình \[y\prime \prime < 0\]
Cho hàm số \[y = \cos x\]. Khi đó \[{y^{\left( {2018} \right)}}\left( x \right)\] bằng:
Cho hàm số \[f\left( x \right) = {\left( {ax + b} \right)^5}\] (với a,b là tham số). Tính \[{f^{\left( {10} \right)}}\] (1)
Cho hàm số \[y = \sqrt {2x - {x^2}} \]. Mệnh đề nào sau đây là đúng ?