IMG-LOGO

Câu hỏi:

07/07/2024 103

Tính đạo hàm hàm số \[y = \ln \left( {1 + \sqrt {x + 1} } \right)\]

A.\[y' = \frac{1}{{2\sqrt {x + 1} \left( {1 + \sqrt {x + 1} } \right)}}\]

Đáp án chính xác

B. \[y' = \frac{1}{{1 + \sqrt {x + 1} }}\]

C. \[y' = \frac{1}{{\sqrt {x + 1} \left( {1 + \sqrt {x + 1} } \right)}}\]

D. \[y' = \frac{2}{{\sqrt {x + 1} \left( {1 + \sqrt {x + 1} } \right)}}\]

Trả lời:

verified Giải bởi Vietjack

Ta có:

\[y' = {\left[ {\ln \left( {1 + \sqrt {x + 1} } \right)} \right]^\prime } = \frac{{{{\left( {1 + \sqrt {x + 1} } \right)}^\prime }}}{{1 + \sqrt {x + 1} }} = \frac{{\frac{1}{{2\sqrt {x + 1} }}}}{{1 + \sqrt {x + 1} }} = \frac{1}{{2\sqrt {x + 1} \left( {1 + \sqrt {x + 1} } \right)}}\]

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tiệm cận đứng của đồ thị hàm số \[y = {\log _a}x(0 < a \ne 1)\] là đường thẳng:

Xem đáp án » 13/10/2022 183

Câu 2:

Điểm nào sau đây không thuộc đồ thị hàm số \[y = lo{g_a}x(0 < a \ne 1)\;\]?

Xem đáp án » 13/10/2022 177

Câu 3:

Hàm số \[y = {\log _a}x\] có đạo hàm là:

Xem đáp án » 13/10/2022 161

Câu 4:

Tìm tất cả các giá trị thực của tham số m sao cho hàm số \[y = log\left( {{x^2} - 2mx + 4} \right)\]có tập xác định là R

Xem đáp án » 13/10/2022 143

Câu 5:

Cho hai hàm số \[y = \ln \left| {\frac{{x - 2}}{x}} \right|\]và\(y = \frac{3}{{x - 2}} - \frac{1}{x} + 4m - 2020\). Tổng tất cả các giá trị nguyên của tham số m để hai đồ thị hàm số cắt nhau tại một điểm duy nhất bằng:

Xem đáp án » 13/10/2022 143

Câu 6:

Chọn mệnh đề đúng:

Xem đáp án » 13/10/2022 141

Câu 7:

Cho ba số thực dương a,b,c khác 1. Đồ thị các hàm số \[y = {\log _a}x,y = {\log _b}x,y = {\log _c}x\] được cho trong hình vẽ sau:

Mệnh đề nào dưới đây đúng?

Xem đáp án » 13/10/2022 135

Câu 8:

Đạo hàm hàm số \[y = {\log _{2018}}\left( {2018x + 1} \right)\] là:

Xem đáp án » 13/10/2022 131

Câu 9:

Hàm số \[y = {\log _a}x(0 < a \ne 1)\] xác định trên:

Xem đáp án » 13/10/2022 130

Câu 10:

Gọi (C) là đồ thị hàm số y=logx. Tìm khẳng định đúng? 

Xem đáp án » 13/10/2022 129

Câu 11:

Xét các số thực a, b thỏa mãn a>b>1. Tìm giá trị nhỏ nhất Pmin của biểu thức \[P = \log _{\frac{a}{b}}^2\left( {{a^2}} \right) + 3{\log _b}\frac{a}{b}\].

Xem đáp án » 13/10/2022 129

Câu 12:

Trong các khẳng định sau, khẳng định nào đúng?

Xem đáp án » 13/10/2022 128

Câu 13:

Cho  \[a > 0,a \ne 1\]. Tìm mệnh đề đúng trong các mệnh đề sau:

Xem đáp án » 13/10/2022 128

Câu 14:

Nếu gọi \[({G_1})\]là đồ thị hàm số \[y = {a^x}\;\] và \[({G_2})\]là đồ thị hàm số \[y = lo{g_a}x\;\] với \[0 < a \ne 1\]. Mệnh đề nào dưới đây đúng ?

Xem đáp án » 13/10/2022 127

Câu 15:

Cho a và b là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị \[y = {\log _a}x,y = {\log _b}x\] và trục hoành lần lượt tại A,B và H phân biệt ta đều có 3HA=4HB (hình vẽ bên dưới). Khẳng định nào sau đây là đúng?

Cho a và b là các số thực dương khác 1. Biết rằng bất kì đường thẳng nào song song với trục tung mà cắt các đồ thị  (ảnh 1)

Xem đáp án » 13/10/2022 127

Câu hỏi mới nhất

Xem thêm »
Xem thêm »