Trong các câu sau câu nào sai?
A. \(\cos 750^\circ = \frac{{\sqrt 3 }}{2}\);
B. \(\sin 1320^\circ = - \frac{{\sqrt 3 }}{2}\);
C. \(\cot 1200^\circ = \frac{{\sqrt 3 }}{3}\);
D. \(\tan 690^\circ = - \frac{{\sqrt 3 }}{3}\).
Đáp án đúng là: C
Đáp án A: cos750° = cos(30° + 2.360°) = cos 30° = \(\frac{{\sqrt 3 }}{2}\). Do đó A đúng.
Đáp án B: sin13200 = sin(–1200 + 4.3600) = sin(– 1200) = \( - \frac{{\sqrt 3 }}{2}\). Do đó B đúng.
Đáp án C: cot12000 = cot(– 600 + 7.1800) = cot(– 600 ) = \( - \frac{{\sqrt 3 }}{3}\). Do đó C sai.
Đáp án D: tan6900 = tan(– 300 + 4.1800) = tan (– 300) = \( - \frac{{\sqrt 3 }}{3}\). Do đó D đúng.
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Hình bình hành có hai cạnh là 3 và 5, một đường chéo bằng 5. Tìm độ dài đường chéo còn lại.
Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
Nếu 3cosx + 2 sinx = 2 và sinx < 0 thì giá trị đúng của sinx là:
Cho tan α = 2. Giá trị của \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) là :
Cho tam giác ABC có a = 2, \[b = \sqrt 6 \], \[c = \sqrt 3 + 1\]. Tính bán kính R của đường tròn ngoại tiếp.
Biết tanα = 2, giá trị của biểu thức \(M = \frac{{3\sin \alpha - 2\cos \alpha }}{{5\cos \alpha + 7\sin \alpha }}\) bằng: