Tam giác ABC có tổng hai góc B và C bằng 135° và độ dài cạnh BC bằng a. Tính bán kính đường tròn ngoại tiếp tam giác.
A. \(\frac{{a\sqrt 2 }}{2}\);
B. \(a\sqrt 2 \);
C. \(\frac{{a\sqrt 3 }}{2}\);
D. \(a\sqrt 3 \).
Đáp án đúng là: A
Ta có góc A = 180° – 135° = 45°
\[\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{a}{{2\sin 45^\circ }} = \frac{{a\sqrt 2 }}{2}\].
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Hình bình hành có hai cạnh là 3 và 5, một đường chéo bằng 5. Tìm độ dài đường chéo còn lại.
Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
Nếu 3cosx + 2 sinx = 2 và sinx < 0 thì giá trị đúng của sinx là:
Cho tan α = 2. Giá trị của \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) là :
Cho tam giác ABC có a = 2, \[b = \sqrt 6 \], \[c = \sqrt 3 + 1\]. Tính bán kính R của đường tròn ngoại tiếp.
Biết tanα = 2, giá trị của biểu thức \(M = \frac{{3\sin \alpha - 2\cos \alpha }}{{5\cos \alpha + 7\sin \alpha }}\) bằng: