Hướng dẫn giải
Đáp án đúng là: C
Gọi M, N lần lượt là trung điểm của AB, AC.
Khi đó \(M\left( {\frac{3}{2};2} \right),\,\,N\left( {\frac{5}{2};\frac{7}{2}} \right)\)
Đường trung trực d của đoạn thẳng AB là đường thẳng đi qua M và nhận \(\overrightarrow {AB} = \left( {1;2} \right)\) làm vectơ pháp tuyến nên có phương trình:
\(x - \frac{3}{2} + 2\left( {y - 2} \right) = 0 \Leftrightarrow 2x + 4y - 11 = 0\)
Đường trung trực ∆ của đoạn thẳng AC là đường thẳng đi qua N và nhận \(\overrightarrow {AC} = \left( {3;5} \right)\) làm vectơ pháp tuyến nên có phương trình:
\(3\left( {x - \frac{5}{2}} \right) + 5\left( {y - \frac{7}{2}} \right) = 0 \Leftrightarrow 3x + 5y - 25 = 0\)
Đường thẳng d cắt đường thẳng ∆ cắt nhau tại điểm \(I\left( {\frac{{45}}{2}; - \frac{{17}}{2}} \right)\) cách đều ba điểm A, B, C.
Do đó đường tròn đi qua ba điểm A, B, C có tâm \(I\left( {\frac{{45}}{2}; - \frac{{17}}{2}} \right)\) và bán kính \({R^2} = I{A^2} = {\left( {1 - \frac{{45}}{2}} \right)^2} + {\left( {1 + \frac{{17}}{2}} \right)^2} = \frac{{1105}}{2}\)
Ta có \({\left( {\frac{{45}}{2}} \right)^2} + {\left( { - \frac{{17}}{2}} \right)^2} - \frac{{1105}}{2} = 26\)
Khi đó đường tròn (C) có phương trình là:
x2 + y2 – 45x + 17y + 36 = 0.
Hai hộp chứa các quả cầu. Hộp thứ nhất chứa 3 quả đen và 2 quả trắng, hộp thứ hai chứa 4 quả đen và 6 quả trắng.
a) Lấy ngẫu nhiên từ hộp thứ nhất 1 quả. Tính xác suất để lấy được 1 quả đen.
b) Lấy ngẫu nhiên từ mỗi hộp một quả. Tính xác suất để lấy được 2 quả cùng màu.