Phương trình \[\sin 2x + 3\sin 4x = 0\] có nghiệm là:
A.\(\left[ {\begin{array}{*{20}{c}}{x = \frac{{k\pi }}{2}}\\{x = \pm \frac{1}{2}arccos( - \frac{1}{6}) + k\pi }\end{array}} \right.(k \in Z)\)
B. \(\left[ {\begin{array}{*{20}{c}}{x = \frac{{k\pi }}{2}}\\{x = \pm \frac{5}{2}arccos( - \frac{1}{6}) + k\pi }\end{array}} \right.(k \in Z)\)
C. \(\left[ {\begin{array}{*{20}{c}}{x = \frac{{k\pi }}{2}}\\{x = \pm \frac{1}{2}arccos( - \frac{1}{3}) + k\pi }\end{array}} \right.(k \in Z)\)
D. \(\left[ {\begin{array}{*{20}{c}}{x = \frac{{k\pi }}{2}}\\{x = \pm \frac{1}{3}arccos( - \frac{1}{6}) + k\pi }\end{array}} \right.(k \in Z)\)
\[sin2x + 3sin4x = 0 \Leftrightarrow sin2x + 6sin2xcos2x = 0\]
\[ \Leftrightarrow sin2x(1 + 6cos2x) = 0\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{sin2x = 0}\\{1 + 6cos2x = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{sin2x = 0}\\{cos2x = - \frac{1}{6}}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x = k\pi }\\{2x = \pm arccos\left( { - \frac{1}{6}} \right) + k2\pi }\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{k\pi }}{2}}\\{x = \pm \frac{1}{2}arccos( - \frac{1}{6}) + k\pi }\end{array}} \right.(k \in Z)\)
Đáp án cần chọn là: A
Để phương trình \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\] có nghiệm, tham số a phải thỏa mãn điều kiện:
Giải phương trình \[\sin 3x - \frac{2}{{\sqrt 3 }}{\sin ^2}x = 2\sin x\cos 2x\].
Giải phương trình \[\sqrt 3 \cos 5x - 2\sin 3x\cos 2x - \sin x = 0\] ta được nghiệm:
Với giá trị nào của m thì phương trình \[\sqrt 3 \sin 2x - m\cos 2x = 1\]luôn có nghiệm?
Số vị trí biểu diễn các nghiệm của phương trình \[4{\sin ^2}x - 4\sin x - 3 = 0\]trên đường tròn lượng giác là:
Phương trình \[6{\sin ^2}x + 7\sqrt 3 \sin 2x - 8{\cos ^2}x = 6\] có nghiệm là:
Phương trình \[{\sin ^2}3x + \left( {{m^2} - 3} \right)\sin 3x + {m^2} - 4 = 0\] khi m=1 có nghiệm là:
Trong khoảng \[\left( {0\,\,;\,\,\frac{\pi }{2}} \right)\]phương trình \[si{n^2}4x + 3sin4xcos4x - 4co{s^2}4x = 0\;\] có:
Nghiệm của phương trình \[4{\sin ^2}2x + 8{\cos ^2}x - 9 = 0\] là:
Phương trình \[{\sin ^3}x + {\cos ^3}x = \sin x - \cos x\] có nghiệm là:
Có bao nhiêu giá trị m nguyên để phương trình \[si{n^2}x - msinxcosx - 3co{s^2}x = 2m\] có nghiệm?