IMG-LOGO

Câu hỏi:

11/07/2024 113

Phương trình \[6{\sin ^2}x + 7\sqrt 3 \sin 2x - 8{\cos ^2}x = 6\] có nghiệm là:

A.\(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k\pi }\\{x = \frac{\pi }{6} + k\pi }\end{array}} \right.(k \in Z)\)

Đáp án chính xác

B. \(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k\pi }\\{x = \frac{\pi }{3} + k\pi }\end{array}} \right.(k \in Z)\)

C. \(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{8} + k2\pi }\\{x = \frac{\pi }{{12}} + k2\pi }\end{array}} \right.(k \in Z)\)

D. \(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{8} + k\pi }\\{x = \frac{\pi }{{12}} + k\pi }\end{array}} \right.(k \in Z)\)

Trả lời:

verified Giải bởi Vietjack

\[6{\sin ^2}x + 7\sqrt 3 \sin 2x - 8{\cos ^2}x = 6 \Leftrightarrow 6{\sin ^2}x + 14\sqrt 3 \sin x\cos x - 8{\cos ^2}x = 6\,\left( * \right)\]

Trường hợp 1: \[\cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi \left( {k \in Z} \right)\]Khi đó\[{\sin ^2}x = 1\]Thay vào phương trình (*) ta có:\[6.1 + 14.0 - 8.0 = 6 \Leftrightarrow 6 = 6\]  (luôn đúng)

\[ \Rightarrow x = \frac{\pi }{2} + k\pi \left( {k \in Z} \right)\]là nghiệm của phương trình.

Trường hợp 2: \[\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi \left( {k \in Z} \right)\] Chia cả 2 vế của phương trình (*) cho \[{\cos ^2}x\]ta được:

\[\begin{array}{*{20}{l}}{6\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + 14\sqrt 3 \frac{{\sin x}}{{\cos x}} - 8 = \frac{6}{{{{\cos }^2}x}} \Leftrightarrow 6{{\tan }^2}x + 14\sqrt 3 \tan x - 8 = 6\left( {1 + {{\tan }^2}x} \right)}\\{ \Leftrightarrow 14\sqrt 3 \tan x - 14 = 0 \Leftrightarrow \sqrt 3 tanx - 1 = 0 \Leftrightarrow \tan x = \frac{1}{{\sqrt 3 }} \Leftrightarrow x = \frac{\pi }{6} + k\pi \left( {k \in Z} \right)}\end{array}\]

Kết hợp 2 trường hợp ta có nghiệm của phương trình là:\(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k\pi }\\{x = \frac{\pi }{6} + k\pi }\end{array}} \right.(k \in Z)\)

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Để phương trình \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\] có nghiệm, tham số phải thỏa mãn điều kiện:

Xem đáp án » 23/06/2022 143

Câu 2:

Phương trình \[\sqrt 3 \sin 2x - \cos 2x + 1 = 0\] có nghiệm là:

Xem đáp án » 23/06/2022 138

Câu 3:

Giải phương trình \[\sin 3x - \frac{2}{{\sqrt 3 }}{\sin ^2}x = 2\sin x\cos 2x\].

Xem đáp án » 23/06/2022 135

Câu 4:

Giải phương trình \[\sqrt 3 \cos 5x - 2\sin 3x\cos 2x - \sin x = 0\] ta được nghiệm:

Xem đáp án » 23/06/2022 130

Câu 5:

Với giá trị nào của m thì phương trình \[\sqrt 3 \sin 2x - m\cos 2x = 1\]luôn có nghiệm?

Xem đáp án » 23/06/2022 127

Câu 6:

Số vị trí biểu diễn các nghiệm của phương trình \[4{\sin ^2}x - 4\sin x - 3 = 0\]trên đường tròn lượng giác là:

Xem đáp án » 23/06/2022 118

Câu 7:

Phương trình \[{\sin ^2}3x + \left( {{m^2} - 3} \right)\sin 3x + {m^2} - 4 = 0\] khi m=1 có nghiệm là:

Xem đáp án » 23/06/2022 109

Câu 8:

Giải phương trình \[\sin 18x\cos 13x = \sin 9x\cos 4x\]

Xem đáp án » 23/06/2022 109

Câu 9:

Giải phương trình \[\cos x + \cos 3x + 2\cos 5x = 0\]

Xem đáp án » 23/06/2022 107

Câu 10:

Trong khoảng \[\left( {0\,\,;\,\,\frac{\pi }{2}} \right)\]phương trình \[si{n^2}4x + 3sin4xcos4x - 4co{s^2}4x = 0\;\] có:

Xem đáp án » 23/06/2022 105

Câu 11:

Nghiệm của phương trình \[4{\sin ^2}2x + 8{\cos ^2}x - 9 = 0\] là:

Xem đáp án » 23/06/2022 103

Câu 12:

Giải phương trình \[\cos 3x\tan 5x = \sin 7x\]

Xem đáp án » 23/06/2022 102

Câu 13:

Phương trình \[\sin 2x + 3\sin 4x = 0\] có nghiệm là:

Xem đáp án » 23/06/2022 92

Câu 14:

Có bao nhiêu giá trị m nguyên để phương trình \[si{n^2}x - msinxcosx - 3co{s^2}x = 2m\] có nghiệm?

Xem đáp án » 23/06/2022 92

Câu 15:

Giải phương trình \[\cos x\cos \frac{x}{2}\cos \frac{{3x}}{2} - \sin x\sin \frac{x}{2}\sin \frac{{3x}}{2} = \frac{1}{2}\]

Xem đáp án » 23/06/2022 91

Câu hỏi mới nhất

Xem thêm »
Xem thêm »