Số vị trí biểu diễn nghiệm của phương trình \[\sin x + \left( {\sqrt 3 - 2} \right)\cos x = 1\] trên đường tròn lượng giác là:
A.0
B.1
C.2
D.3
Bước 1:
Với\[a = 1;b = \sqrt 3 - 2;c = 1\] ta có:
\[\begin{array}{*{20}{l}}{\sin x + \left( {\sqrt 3 - 2} \right)\cos x = 1}\\{ \Leftrightarrow \frac{1}{{\sqrt {8 - 4\sqrt 3 } }}\sin x + \frac{{\sqrt 3 - 2}}{{\sqrt {8 - 4\sqrt 3 } }}\cos x}\\{ = \frac{1}{{\sqrt {8 - 4\sqrt 3 } }}}\end{array}\]
Đặt \[\frac{1}{{\sqrt {8 - 4\sqrt 3 } }} = \cos \alpha \Rightarrow \frac{{\sqrt 3 - 2}}{{\sqrt {8 - 4\sqrt 3 } }} = \sin \alpha \] Khi đó phương trình tương đương:
\[\sin x\cos \alpha + \cos x\sin \alpha = \cos \alpha \]
Bước 2:
Vì \[\alpha \ne 0 \Rightarrow \]có 2 vị trí biểu diễn nghiệm của phương trình.
Đáp án cần chọn là: C
Để phương trình \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\] có nghiệm, tham số a phải thỏa mãn điều kiện:
Giải phương trình \[\sin 3x - \frac{2}{{\sqrt 3 }}{\sin ^2}x = 2\sin x\cos 2x\].
Giải phương trình \[\sqrt 3 \cos 5x - 2\sin 3x\cos 2x - \sin x = 0\] ta được nghiệm:
Với giá trị nào của m thì phương trình \[\sqrt 3 \sin 2x - m\cos 2x = 1\]luôn có nghiệm?
Số vị trí biểu diễn các nghiệm của phương trình \[4{\sin ^2}x - 4\sin x - 3 = 0\]trên đường tròn lượng giác là:
Phương trình \[6{\sin ^2}x + 7\sqrt 3 \sin 2x - 8{\cos ^2}x = 6\] có nghiệm là:
Phương trình \[{\sin ^2}3x + \left( {{m^2} - 3} \right)\sin 3x + {m^2} - 4 = 0\] khi m=1 có nghiệm là:
Trong khoảng \[\left( {0\,\,;\,\,\frac{\pi }{2}} \right)\]phương trình \[si{n^2}4x + 3sin4xcos4x - 4co{s^2}4x = 0\;\] có:
Nghiệm của phương trình \[4{\sin ^2}2x + 8{\cos ^2}x - 9 = 0\] là:
Có bao nhiêu giá trị m nguyên để phương trình \[si{n^2}x - msinxcosx - 3co{s^2}x = 2m\] có nghiệm?