Đạo hàm cấp 4 của hàm số \[y = \frac{{2x + 1}}{{{x^2} - 5x + 6}}\] là :
A.\[{y^{\left( 4 \right)}} = \frac{{7.4!}}{{{{\left( {x - 3} \right)}^5}}} - \frac{{5.4!}}{{{{\left( {x - 2} \right)}^5}}}\]
B. \[{y^{\left( 4 \right)}} = \frac{{5.4!}}{{{{\left( {x - 3} \right)}^5}}} - \frac{{2.4!}}{{{{\left( {x - 2} \right)}^5}}}\]
C. \[{y^{\left( 4 \right)}} = \frac{{5.4!}}{{{{\left( {x - 2} \right)}^5}}} - \frac{{7.4!}}{{{{\left( {x - 3} \right)}^5}}}\]
D. \[{y^{\left( 4 \right)}} = \frac{7}{{{{\left( {x - 3} \right)}^4}}} - \frac{5}{{{{\left( {x - 2} \right)}^4}}}\]
\[\begin{array}{*{20}{l}}{y = \frac{{2x + 1}}{{{x^2} - 5x + 6}} = \frac{{2x + 1}}{{\left( {x - 2} \right)\left( {x - 3} \right)}} = \frac{7}{{x - 3}} - \frac{5}{{x - 2}}}\\{ \Rightarrow {y^{\left( 4 \right)}} = 7{{\left( {\frac{1}{{x - 3}}} \right)}^{\left( 4 \right)}} - 5{{\left( {\frac{1}{{x - 2}}} \right)}^{\left( 4 \right)}}}\end{array}\]
Xét hàm số \[\frac{1}{{ax + b}},\,a \ne 0\] ta có :
\[\begin{array}{l}y\prime = {\frac{{ - a}}{{{{(ax + b)}^2}}}^{}}\\y\prime \prime = {\frac{{a.2(ax + b).a}}{{(ax + b)4}}^{}} = \frac{{2{a^2}}}{{{{(ax + b)}^3}}}\end{array}\]
\[y\prime \prime \prime = \frac{{ - 2{a^2}.3{{(ax + b)}^2}.a}}{{{{(ax + b)}^6}}} = \frac{{ - 2.3.{a^3}}}{{{{(ax + b)}^4}}}\]
\[...\]
\[\begin{array}{l}{y^{(n)}} = \frac{{{{( - 1)}^n}.{a^n}.n!}}{{{{(ax + b)}^{n + 1}}}}\\ \Rightarrow {(\frac{1}{{x - 3}})^{(4)}} = \frac{{{{( - 1)}^4}{{.1}^4}.4!}}{{{{(x - 3)}^5}}} = \frac{{4!}}{{{{(x - 2)}^5}}}\\{\left( {\frac{1}{{x - 2}}} \right)^{\left( 4 \right)}} = \frac{{{{( - 1)}^4}{{.1}^4}.4!}}{{{{(x - 2)}^5}}} = \frac{{4!}}{{{{(x - 2)}^5}}}\\ \Rightarrow {y^{(4)}} = 7{\left( {\frac{1}{{x - 3}}} \right)^{\left( 4 \right)}} - 5{\left( {\frac{1}{{x - 2}}} \right)^{\left( 4 \right)}} = \frac{{7.4!}}{{{{(x - 3)}^5}}} - \frac{{5.4!}}{{{{(x - 2)}^5}}}\end{array}\]
Đáp án cần chọn là: A
Xét \[y = f\left( x \right) = \cos \left( {2x - \frac{\pi }{3}} \right)\] Phương trình \[{f^{\left( 4 \right)}}\left( x \right) = - 8\;\]có nghiệm \[x \in \left[ {0;\frac{\pi }{2}} \right]\;\] là:
Hàm số \[y = {\left( {{x^2} + 1} \right)^3}\] có đạo hàm cấp ba là:
Cho hàm số \[y = {\left( {{x^2} - 1} \right)^2}.\]. Tính giá trị biểu thức \[M = {y^{\left( 4 \right)}} + 2xy''' - 4y''\]
Cho hàm số \[y = f\left( x \right) = - \frac{1}{x}\]. Xét hai mệnh đề:
(I): \[y\prime \prime = f\prime \prime (x) = \frac{2}{{{x^3}}}\]
(II): \[y\prime \prime \prime = f\prime \prime \prime (x) = - \frac{6}{{{x^4}}}\]
Mệnh đề nào đúng?
Cho hàm số \[y = 3{x^5} - 5{x^4} + 3x - 2\]. Giải bất phương trình \[y\prime \prime < 0\]
Cho hàm số \[y = \cos x\]. Khi đó \[{y^{\left( {2018} \right)}}\left( x \right)\] bằng:
Cho hàm số \[f\left( x \right) = {\left( {ax + b} \right)^5}\] (với a,b là tham số). Tính \[{f^{\left( {10} \right)}}\] (1)
Cho hàm số \[y = \sqrt {2x - {x^2}} \]. Mệnh đề nào sau đây là đúng ?
Một chất điểm chuyển động thẳng xác định bởi phương trình \[s = {t^3} - 2{t^2} + 4t + 1\] trong đó t là giây, s là mét. Gia tốc chuyển động khi t=2 là