IMG-LOGO
Trang chủ Lớp 12 Vật lý Trắc nghiệm Vật Lí 12 Năng lượng trong dao động điều hòa có lời giải chi tiết

Trắc nghiệm Vật Lí 12 Năng lượng trong dao động điều hòa có lời giải chi tiết

Trắc nghiệm Vật Lí 12 Năng lượng trong dao động điều hòa có lời giải chi tiết

  • 1912 lượt thi

  • 39 câu hỏi

  • 50 phút

Danh sách câu hỏi

Câu 2:

Một con lắc lò xo có khối lượng vật nhỏ bằng 50 g dao động điều hòa theo một trục cố định nằm ngang với phương trình x = Acosωt. Lần đầu tiên động năng của vật bằng 3 lần thế năng ở thời điểm t=130s. Lấy π2 = 10. Lò xo của con lắc có độ cứng bằng: 

Xem đáp án

Đáp án A

Tại thời điểm t = 0, vật ở vị trí biên dương. Vị trí động năng bằng 3 lần thế năng ứng với x = ±0,5A

→ Biểu diễn dao động của vật tương ứng trên đường tròn

+ Từ hình vẽ, ta có T6=130→ T = 0,2 s

→ Độ cứng của lò xo T=2πmk →0,2=2π50.103k → k = 50 N/m 


Câu 4:

Một chất điểm dao động điều hòa trên trục Ox với biên độ 10 cm, chu kì 2 s. Mốc thế năng ở vị trí cân bằng. Tốc độ trung bình của chất điểm trong khoảng thời gian ngắn nhất khi chất điểm đi từ vị trí có động năng bằng 3 lần thế năng đến vị trí có động năng bằng một phần ba lần thế năng là 

Xem đáp án

Đáp án D

Các vị trí động  năng bằng 3 lần thế năng và bằng một phần ba lần thế năng tương ứng x1=±A2x2=±32A

 

→ Biễu diễn dao động của vật tương ứng trên đường tròn 

+ Tốc độ trung bình của vật vtb=St=32AA2T6T12=21,96cm/s 


Câu 5:

Một con lắc lò xo gồm lò xo nhẹ và vật nhỏ khối lượng 100g đang dao động điều hòa theo phương ngang, mốc tính thế năng tại vị trí cân bằng. Từ thời điểm t1 = 0 đến s, động năng của con lắc tăng từ 0,096 J đến giá trị cực đại rồi giảm về 0,064 J. Ở thời điểm t2, thế năng của con lắc bằng 0,064 J. Biên độ dao động của con lắc là 

Xem đáp án

Đáp án C

Cơ năng của con lắc E = Ed2 + Et2 = 0,128J

→ Biểu diễ dao động của vật tương ứng trên đường tròn.

+ Từ hình vẽ ta có Δt=T360arsin0,5AA+arsin2A2A=π48

→ T = 0,1π → ω = 20 rad/s

Vậy biên độ dao động của con lắc là A=2Emω2=2.0,1280,1.202=8cm 


Câu 7:

Một con lắc lò xo gồm vật nhỏ và con lắc có độ cứng 20 N/m dao động điều hòa với chu kì 2 s. Khi pha dao động là 0,5π thì vận tốc của vật là 203 cm/s. Lấy π2=10. Khi vật đi qua vị trí có li độ 3π cm thì động năng của con lắc là 

Xem đáp án

Đáp án A

Khi dao động có pha là 0,5π → vật đi qua vị trí cân bằng theo chiều âm

v=ωA=203cmA=23πcm

Động năng của con lắc tại vị trí x = 3π cm

Wd=WWt=12kA2x2=122023π23π2.104=0,03J


Câu 8:

Con lắc lò xo đặt nằm ngang, gồm vật nặng có khối lượng m và một lò xo nhẹ có độ cứng 100 N/m dao động điều hòa. Trong quá trình dao động chiều dài của lò xo biến thiên từ 22 cm đến 30 cm. Khi vật cách vị trí biên 3 cm thì động năng của vật là

Xem đáp án

Đáp án A

Biên độ dao động của con lắc A=lmaxlmin2=30222=4cm

→ Động năng của con lắc tại vị trí có li độ x 

Ed=EEt=12kA2x2=12.100.0,0420,032=0,035J


Câu 9:

Một vật nặng gắn vào lò xo có độ cứng k = 200 N/m, dao động điều hòa với biên độ A = 10 cm. Khi vật nặng cách vị trí biên 6 cm nó sẽ có động năng:

Xem đáp án

Đáp án B

Vật nặng cách vị trí biên 6 cm → cách vị trí cân bằng 4 cm.

Động năng của vật ở li độ x: 

Ed=12kA2x2=12.200.0,120,042=0,84J


Câu 12:

Một chất điểm dao động điều hòa không ma sát. Khi vừa qua khỏi vị trí cân bằng một đoạn S động năng của chất điểm là 1,8 J. Đi tiếp một đoạn S nữa thì động năng chỉ còn 1,5 J và nếu đi thêm đoạn S nữa thì động năng là (biết trong quá trình này vật chưa đổi chiều chuyển động):

Xem đáp án

Đáp án B

Khi vật chưa đổi chiều chuyển động, ta luôn có tỉ số x1A2=Et1Ex2A2=Et2EsA2=11,8E4sA2=11,5EE=1,9sA2=119

Khi vật đi thêm một đoạn S nữa, khi đó động năng của vật là: 9sA2=1EdE Ed = 1 J


Câu 13:

Một chất điểm đang dao động điều hòa với biên độ A theo phương nằm ngang, khi vừa đi qua khỏi vị trí cân bằng một đoạn S thì động năng của chất điểm là 91 mJ. Đi tiếp một đoạn S nữa thì động năng còn 64 mJ. Nếu đi tiếp một đoạn S nữa thì động năng của chất điểm còn bao nhiêu? Biết A > 3S

Xem đáp án

Đáp án D

Khi vật chưa đổi chiều chuyển động, ta luôn có tỉ số: x1A2=Et1Ex2A2=Et2EsA2=191E4sA2=164EE=100sA2=9100

Khi vật đi thêm một đoạn S nữa, khi đó động năng của vật là: 9sA2=1EdEEd=E19sA2=100199100=19mJ


Câu 17:

Một con lắc lò xo dao động điều hòa theo phương ngang với cơ năng E = 2 J, chu kì T = 2 s. Xét khoảng thời gian đầu tiên mà vật đang đi theo một chiều từ biên này đến biên kia, ta thấy từ thời điểm t­1 đến thời điểm t2 thì động năng đạt được lần lượt là 1,8 J và 1,6 J. Hiệu t2  t1 có giá trị lớn nhất gần bằng giá trị nào sau đây nhất

Xem đáp án

Đáp án B

Ta có xA=±EtE=±EEdEx1A1=±21,82=±110x2A2=±21,62=±15

Để hiệu t2  t1 là lớn nhất thì hai vị trí x1x2 phải nằm đối nhau qua vị trí cân bằng

Từ hình vẽ ta có:

t2t1max=arsinx1A+arsinx2Aω=arsin110+arsin15π=0,25


Câu 18:

Một con lắc đơn có chiều dài dây treo là 1,44 m, dao động điều hòa tại nơi có g=π2m/s2. Thời gian ngắn nhất để động năng lại bằng 3 lần thế năng là

Xem đáp án

Đáp án A

Chu kì dao động của vật T=2πlg=2π1,44π2=2,4s

→ Thời gian ngăn nhất để động năng lại bằng 3 lần thế năng là t=T6=0,4s


Câu 19:

Một con lắc lò xo dao động điều hòa trên trục Ox với phương trình dao động x=Acosωtπ6. Gọi Wđ, Wt lần lượt là động năng, thế năng của con lắc. Trong một chu kì Wđ Wt là 13s. Thời điểm vận tốc v và li độ x của vật thỏa mãn v=ωx lần thứ 2016 kể từ thời điểm ban đầu là:

Xem đáp án

Đáp án B

Ta có Ed=13Et x=±32A trong một chu kì khoảng thời gian EdEt3 Δt=T3=13s → T = 1 s.

Kết hợp với: xA2+vωA2=1v=ωxx=22A

Tại t = 0, vật đi qua vị trí x=32A, theo chiều dương. Biểu diễn các vị trí tương ứng trên đường tròn

Trong một chu kì vật đi qua vị trí thoãn mãn yêu cầu bài toán 2 lần → tách 2016 = 2014 + 2

Vậy tổng thời gian là Δt=tφ+1007T=2324+1007=1007,958s


Câu 20:

Con lắc lò xo gồm lò xo và vật nhỏ có khối lượng 50 g dao động điều hòa với chu kì T. Trong một chu kì, khoảng thời gian mà động năng không nhỏ hơn 0,12 J là 2T3. Tốc độ trung bình của vật trong một chu kì gần bằng

Xem đáp án

Đáp án B

Thời gian trong một chu kì động năng của vật lớn hơn 0,12 J là  2T3→ động năng này tương ứng với vận tốc 0,5vmax

Khi đó Ed=12EmaxEmax= 0,48 J.

Kết hợp với vtb=4AT=2πvmax=2π2Edmaxm=2,78m/s


Câu 22:

Vật dao động điều hòa với biên độ A, khi động năng gấp n lần thế năng, vật có li độ

Xem đáp án

Đáp án B

Ta có :

Ed+Et=EEd=nEtn+1Et=Ex=±An+1


Câu 23:

Một vật dao động điều hòa dọc theo trục tọa độ nằm ngang Ox với chu kì T, vị trí cân bằng và mốc thế năng ở gốc tọa độ. Tính từ lúc vật có li độ lớn nhất, thời điểm đầu tiên mà động năng và thế năng của vật bằng nhau là

Xem đáp án

Đáp án B

Động năng bằng thế năng tại các vị trí x=±22A

Tại t = 0 vật ở vị trí có li độ lớn nhất → x = +A. Thời điểm gần nhất vật có động năng bằng thế năng ứng với x=22AΔt=T8


Câu 24:

Một con lắc lò xo dao động điều hòa theo phương nằm ngang quanh vị trí cân bằng O. Chu kỳ và biên độ dao động của con lắc lần lượt là 0,4 s và 4 cm. Chọn mốc thời gian t = 0 lúc vật chuyển động nhanh dần cùng chiều dương qua vị trí động năng bằng thế năng. Phương trình dao động của vật là

Xem đáp án

Đáp án D

Tần số dao động của vật ω=2πT=5πrad/s

Vị trí động năng bằng thế năng x=±22A, vật chuyển động nhanh dần đều theo chiều dương, ứng với chuyển động từ biên âm về vị trí cân bằng. Do đó x0=22A φ0=3π4 rad.

Phương trình dao động của vật x=4cos5πt3π4 cm


Câu 25:

Một con lắc lò xo gồm lò xo có chiều dài tự nhiên 20 cm gắn với vật nặng khối lượng 200 g dao động điều hòa theo phương thẳng đứng. Lấy g=10m/s2. Khi lò xo có chiều dài 18 cm thì vận tốc của vật nặng bằng không và lực đàn hồi của lò xo có độ lớn 2 N. Năng lượng dao động của vật là

Xem đáp án

Đáp án A

Khi lò xo có chiều dài 18 cm thì vận tốc của vật bằng 0 → vị trí biên trên

→ Độ cứng của lò xo k=FΔl=20,20,18=100 N/m

→ Độ biến dạng của lò xo tại vị trí cân bằng Δl0=mgk=0,2.10100=2 cm → A = 4 cm.

Năng lượng dao động E=0,5kA2=0,08J.


Câu 27:

Hai chất điểm có khối lượng m1m2 = 3m1 dao động điều hòa cùng phương, có phương trình x1 = Acosω1t  và x2 = Acos(ω2t  0,5π). Ở thời điểm t1 hai vật gặp nhau lần thứ nhất, thời điểm t2 = 2t1 hai vật gặp nhau lần thứ hai và khi đó m1 chưa đổi chiều chuyển động. Hỏi thời điểm hai vật gặp nhau lần thứ 2018 thì tỉ số động năng của vật m2 so với m1 là bao nhiêu

Xem đáp án

Đáp án D

Biễu diễn dao động của hai chất điểm tương ứng trên đường tròn.

Lần gặp nhau đầu tiên ứng với chất điểm thứ nhất ở vị trí (1') và chất điểm thứ hai ở vị trí (2').

→ Lần gặp thứ hai ứng với vị trí (1'') trên đường tròn.

+ Từ hình vẽ, ta có ω2 = 3ω1.

Khi hai chất điểm gặp nhau thì x1 = x2 v2v1=ω2ω1Ed2Ed1=m2m1ω2ω12=31312=27


Câu 28:

Một chất điểm dao động điều hòa. Khi vừa rời khỏi vị trí cân bằng một đoạn a thì động năng của chất điểm giảm liên tục đến 5,208 mJ. Tiếp tục đi thêm một đoạn 2a thì động năng giảm liên tục đến 3,608 mJ. Nếu tiếp tục đi thêm một đoạn 3a thì động năng của chất điểm là

Xem đáp án

Đáp án D

Ta có xA2=1EdExA2+EdE=1

Theo giả thuyết bài toán, ta có: aA2+5,208E=19xA2+3,608E=1aA=526E=5,408

→ Khi chất điểm đi được 6a →x=2A6526A=11A13

+ Tương tự như vậy, khi vật đi thêm một đoạn 3a nữa thì Ed=E111332=5,408111132=1,536 mJ.


Câu 29:

Một con lắc lò xo dao động điều hòa trên trục Ox với chu kì T. Trong chu kì dao động đầu tiên, động năng của con lắc tại các thời điểm theo thứ tự từ nhỏ đến lớn có giá trị trong bảng sau

Hệ thức đúng

Xem đáp án

Đáp án C

+ Từ bảng số liệu, ta thấy rằng động năng cực đại của vật Edmax = E = 6 mJ → ban đầu vật đi qua vị trí cân bằng.

Sau khoảng thời gian 0,125T động năng giảm một nửa →t1=T6T8=T24

+ Tại thời điểm T6 sau khoảng thời gian 0,125T tiếp theo vật đến biên (có động năng bằng 0) → t3=T6+T8=7T24.

Thời điểm t4 ứng với vị trí thế năng bằng 3 lần động năng x=±32At4=7T24+T12=3T8


Câu 31:

Một con lắc lò xo treo thẳng đứng, k = 80 N/m, m = 200 g. Kéo vật nhỏ thẳng đứng xuống dưới sao cho lò xo dãn 7,5 cm rồi thả nhẹ cho con lắc dao động điều hòa. Lấy g=10m/s2, mốc thế năng ở vị trí cân bằng của vật. Khi độ lớn lực đàn hồi nhỏ nhất thì thế năng đàn hồi của lò xo là

Xem đáp án

Đáp án C

Độ biến dạng của lò xo tại vị trí cân bằng Δl0=mgk=0,2.1080=2,5 cm.

Kéo vật đến vị trí lò xo dãn 7,5 cm rồi thả nhẹ → vật sẽ dao động với biên độ A = 5 cm → E=0,5kA2=0,1J.

Lực đàn hồi của lò xo có độ lớn nhỏ nhất khi vật đi qua vị trí lò xo không biến dạng, nếu chọn chiều dương hướng xuống vị trí này ứng với x=2,5 cm → Ed=12kA2x2=12800,0520,0252=0,075 J.

→ Thế năng của vật tại vị trí này là Et = E  Ed = 0,1  0,075 = 0,025 J.

Lưu ý rằng thế năng của vật bằng tổng thế năng đàn hồi và thế năng trọng trường.

→ Thế năng đàn hồi của vật là Edh=0,0250,2.10.0,025=0,025 J.


Câu 34:

Có hai con lắc lò xo giống hệt nhau dao động điều hòa trên mặt phẳng nằm ngang dọc theo hai đường thẳng cạnh nhau và song song với trục Ox. Biên độ của con lắc một là A1 = 4 cm; của con lắc hai là A2=43 cm, con lắc hai dao động sớm pha hơn con lắc một. Trong quá trình dao động khoảng cách lớn nhất giữa hai vật dọc theo trục Ox là d = 4 cm. Khi động năng của con lắc hai đạt cực đại là W thì động năng của con lắc một là

Xem đáp án

Đáp án D

Khoảng cách giữa hai con lắc trong quá trình dao động d=x1x2dmax=A22+A222A1A2cosΔφ

Thay các giá trị đã biểu vào biểu thức, ta thu được 4=42+4322.4.43.coΔφΔφ=π6rad

→ Khi động năng của vật (2) cực đại thì vật (1) đang ở vị trí có li độ bằng một nửa biên độ, nghĩa là động năng của (1) bằng ba phần tư động năng cực đại

Mặc khác E1E2=A1A22=13E1=E23=W3Ed1=W4


Câu 35:

Một chất điểm dao động điều hòa dọc theo trục Ox. Ở thời điểm ban đầu vật đi qua vị trí cân bằng theo chiều dương, đến thời điểm t1=16s thì động năng của vật giảm đi 4 lần so với lúc đầu và vật vẫn chưa đổi chiều chuyển động, đến thời điểm t2=512s vật đi được quãng đường 12 cm kể từ thời điểm ban đầu. Biên độ dao động của vật là

Xem đáp án

Đáp án C

Thời điểm ban đầu v = vmax vật đi qua vị trí cân bằng, đến thời điểm t1 vận tốc giảm một nửa (động năng giảm 4 lần) →t1=T6=16s → T = 1 s → ω = 2π rad/s.

Đến thời điểm t2=512s tương ứng với góc quét Δφ = ωt2 = 1500

→ Vật đi được quãng đường s=A+A2=12 cm → A = 8 cm.


Câu 37:

Một vật thực hiện đồng thời ba dao động điều hòa cùng phương, cùng tần số tương ứng là (1), (2), (3). Dao động (1) ngược pha và có năng lượng gấp đôi dao động (2). Dao động tổng hợp (13) có năng lượng là 3W. Dao động tổng hợp (23) có năng lượng W và vuông pha với dao động (1). Dao động tổng hợp của vật có năng lượng gần nhất với giá trị nào sau đây?

Xem đáp án

Đáp án D

Biểu diễn vecto các dao động.

+ Ta có E1=2E2E13=3E23A1=2A2A13=3A23

Để đơn giản, ta chọn A2=1A23=xA1=2A13=3x

+ Từ hình vẽ ta có 3x2=x2+1+22x=1+22

x1x23  nên biên độ của dao động tổng hợp của vật là A2=A232+A12=1+222+22

→Ta có EE23=EW=A2A232=1+222+221+2221,7


Câu 39:

Treo vật nặng m = 200 g vào đầu dưới của một lò xo có độ cứng k = 100 N/m. Kéo vật xuống dưới theo phương đứng để lò xo giãn 6,0 cm rồi thả nhẹ (t = 0). Thời điểm đầu tiên để động năng của vật bằng thế năng đàn hồi lò xo là

Xem đáp án

Đáp án B

Tần số góc của dao động ω=km=1000,2=105 rad/s → T = 0,281 s.

+ Độ biến dạng của lò xo tại vị trí cân bằng Δl0=mgk=0,1.10100=2 cm

→ Kéo vật xuống vị trí lò xo giãn 6 cm rồi thả nhẹ → lò xo sẽ dao động với biên độ A = 6 – 2 = 4 cm.

+ Với Ed = Edh  E  Et = Edh12kA212kx2=12kΔl0+x22x2+2Δl0x+Δl02A2=0

Thay các giá trị đã biết vào phương trình, ta thu được x2+2x6=0 → hoặc x = 1,65 cm hoặc x = –3,65 cm.

→ Thời gian gần nhất kể từ thời điểm ban đầu (vật đang ở biên là) Δtmin=arcos1,65436000,281=51,3ms


Bắt đầu thi ngay