Các bài toán về mặt phẳng và mặt cầu
-
1313 lượt thi
-
21 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(2;1;−1) và tiếp xúc với mặt phẳng (α) có phương trình 2x−2y−z+3=0. Bán kính của (S) là:
Vì (S) tiếp xúc với mặt phẳng \[(\alpha )\]nên ta có \[R = d(I,\alpha )\]
Suy ra\[R = d(I,\alpha ) = \frac{{\left| {2.2 - 2.1 - ( - 1) + 3} \right|}}{{\sqrt {4 + 4 + 1} }} = \frac{6}{3} = 2\]
Đáp án cần chọn là: A
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;−1) và đi qua điểm A(2;1;2). Mặt phẳng nào dưới đây tiếp xúc với (S) tại A?
Ta có\[\overrightarrow {AI} = \left( {1;1; - 3} \right)\]
Vì (P) tiếp xúc với (S) tại A.
\[ \Leftrightarrow IA \bot (P) \Rightarrow \overrightarrow {IA} = \overrightarrow {{n_P}} \]
Do đó, phương trình mặt phẳng (P) có dạng\[x + y - 3z + d = 0\left( * \right)\]
Mặt khác, vì \[A \in (P)\] nên ta có\[2 + 1 - 3.2 + d = 0 \Leftrightarrow d = 3\]
Vậy ta có\[(P):x + y - 3z + 3 = 0\]
Đáp án cần chọn là: D
Câu 3:
Trong không gian với hệ tọa độ Oxyz cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 2} \right)^2} = 4\] và 2 đường thẳng \({\Delta _1}:\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 1 - t}\\{z = t}\end{array}} \right.\)và \({\Delta _2}:\frac{{x - 1}}{{ - 1}} = \frac{y}{1} = \frac{z}{{ - 1}}\). Một phương trình mặt phẳng (P) song song với \[{\Delta _1},{\Delta _2}\;\] và tiếp xúc với mặt cầu (S) là:
(S) có tâm\[I(1; - 1; - 2);R = 2\]
Vì (P) song song với \[{{\rm{\Delta }}_1},{{\rm{\Delta }}_2}\] có vtcp tương ứng là\[\overrightarrow {{u_1}} = \left( {2; - 1;1} \right);\overrightarrow {{u_2}} = \left( { - 1;1; - 1} \right)\]
ta có \[\overrightarrow {{n_P}} = [\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&1\\1&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\{ - 1}&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 1}&1\end{array}} \right|} \right) = (0;1;1)\]
Gọi\[(P):y + z + d = 0\]
\[d(I;P) = \frac{{| - 1 - 2 + d|}}{{\sqrt 2 }} = \frac{{|d - 3|}}{{\sqrt 2 }}\]
\(\begin{array}{l} \Rightarrow \frac{{|d - 3|}}{{\sqrt 2 }} = 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{d - 3 = 2\sqrt 2 }\\{d - 3 = - 2\sqrt 2 }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{d = 3 + 2\sqrt 2 }\\{d = 3 - 2\sqrt 2 }\end{array}} \right.\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{y + z + 3 + 2\sqrt 2 = 0}\\{y + z + 3 - 2\sqrt 2 = 0}\end{array}} \right.\end{array}\)
Đáp án cần chọn là: D
Câu 4:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;−1;0),B(1;1;−1) và mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0\]. Mặt phẳng (P) đi qua A,B và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là:
\[(S):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0\]có tâm I(1;−2;1) và bán kính R=3.
Do (P) đi qua A,B và cắt (S) theo giao tuyến là đường tròn có bán kính lớn nhất nên (P) đi qua tâm I của (S)
Ta có:\[\overrightarrow {IA} = \left( { - 1;1; - 1} \right),\overrightarrow {IB} = \left( {0;3; - 2} \right);\overrightarrow {{n_{(P)}}} = \left[ {\overrightarrow {IA} ,\overrightarrow {IB} } \right] = \left( {1; - 2; - 3} \right)\]
Phương trình mặt phẳng\[(P):1(x--0)--2(y + 1)--3(z--0) = 0\]hay\[x--2y--3z--2 = 0\]
Đáp án cần chọn là: B
Câu 5:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x - 2)^2} + {(y + 1)^2} + {(z - 4)^2} = 10\] và mặt phẳng \[(P): - 2x + y + \sqrt 5 z + 9 = 0\;\]. Gọi (Q) là tiếp diện của (S) tại M(5;0;4) . Tính góc giữa (P) và (Q).
Gọi mặt cầu tâm I(2;−1;4).
Mặt phẳng tiếp diện của mặt cầu (S) (tâm I, bán kính R) tại điểm M chính là mặt phẳng đi qua điểm M và vuông góc với bán kính IM tại tiếp điểm M
Mặt phẳng qua M(5;0;4) vuông góc với\[IM\left( {\overrightarrow {IM} = (3;1;0)} \right)\]có phương trình:
\[(Q):3\left( {x - 5} \right) + {\rm{\;}}y\; = 0 \Leftrightarrow 3x + y - 15 = 0\]
Có:\[{\vec n_P}( - 2;1;\sqrt 5 );{\vec n_Q}(3;1;0)\]
Nên ta có:
\[\cos \widehat {\left( {(P);(Q)} \right)} = \left| {\cos \widehat {\left( {\overrightarrow {{n_P}} ;\overrightarrow {{n_Q}} } \right)}} \right| = \frac{{\left| { - 6 + 1} \right|}}{{\sqrt {10} .\sqrt {10} }} = \frac{1}{2} \Rightarrow \widehat {\left( {(P);(Q)} \right)} = {60^0}\]
Đáp án cần chọn là: B
Câu 6:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 9\;\]và mặt phẳng \[(P):2x - 2y + z + 3 = 0\]. Gọi M(a;b;c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Khi đó:
Giả sử M(a;b;c) là điểm cần tìm.
Mặt cầu (S) có tâm I(1;2;3) bán kính R=3.Gọi \[\Delta \] là đường thẳng qua I và vuông góc với mp(P).
\( \Rightarrow \Delta :\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y = 2 - 2t}\\{z = 3 + t}\end{array}} \right.\)
Đường thẳng \[\Delta \] cắt mặt cầu tại 2 điểm A,B. Toạ độ A,B là nghiệm của hệ:
\(\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y = 2 - 2t}\\\begin{array}{l}z = 3 + t\\{(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 9\end{array}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{t = 1}\\{t = - 1}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{A(3;0;4)}\\{B( - 1;4;2)}\end{array}} \right.\)
Ta có:\[d\left( {A;\left( P \right)} \right) = \frac{{\left| {2.3 - 2.0 + 4 + 3} \right|}}{{\sqrt {{2^2} + {2^2} + 1} }} = \frac{{13}}{3}\]
và\[d\left( {B;\left( P \right)} \right) = \frac{{\left| {2.( - 1) - 2.4 + 2 + 3} \right|}}{{\sqrt {{2^2} + {2^2} + 1} }} = \frac{5}{3}\]
Do đó điểm cần tìm là điểm\[A \equiv M \Rightarrow a + b + c = 3 + 0 + 4 = 7\]
Đáp án cần chọn là: C
Câu 7:
Trong không gian Oxyz, xác định tọa độ tâm I của đường tròn giao tuyến của mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 64\;\]với mặt phẳng\[\left( \alpha \right):2x + 2y + z + 10 = 0\].
(S) có tâm I(1;1;1) và bán kính R=8.
Tâm đường tròn giao tuyến (C) là hình chiếu vuông góc H của I trên (P).
Đường thẳng \[\Delta \] qua I và vuông góc với (P) có phương trình là
\[\frac{{x - 1}}{2} = \frac{{y - 1}}{2} = \frac{{z - 1}}{1}\]
Do\[H \in \Delta \] nên\[H(2t + 1;2t + 1;t + 1)\]
Ta có\[H \in (P)\] nên:
\[2(2t + 1) + 2(2t + 1) + t + 1 + 10 = 0 \Leftrightarrow 9t + 15 = 0 \Leftrightarrow t = - \frac{5}{3}\]
\( \Rightarrow H(\frac{{ - 7}}{3};\frac{{ - 7}}{3};\frac{{ - 2}}{3})\)
Đáp án cần chọn là: A
Câu 8:
Cho điểm A(0;8;2) và mặt cầu (S) có phương trình \[\left( S \right):{\left( {x - 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 7} \right)^2} = 72\;\]và điểm B(1;1;−9). Viết phương trình mặt phẳng (P) qua A tiếp xúc với (S) sao cho khoảng cách từ B đến (P) là lớn nhất. Giả sử \[\overrightarrow n = \left( {1;m;n} \right)\;\]là véctơ pháp tuyến của (P). Lúc đó:
(S) có tâm I(5;−3;7) và bán kính\[R = 6\sqrt 2 \]
Theo đề bài ta có phương trình (P) có dạng\[x + m(y - 8) + n(z - 2) = 0\]
Vì (P) tiếp xúc với (S) nên
\[{\rm{d}}(I,(P)) = \frac{{\left| {5 + m( - 3 - 8) + n(7 - 2)} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }} = \frac{{\left| {5 - 11m + 5n} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }} = 6\sqrt 2 \]
\[\begin{array}{*{20}{l}}{ \Leftrightarrow \left| {5 - 11m + 5n} \right| = 6\sqrt 2 .\sqrt {1 + {m^2} + {n^2}} }\\{ \Leftrightarrow 25 + 121{m^2} + 25{n^2} - 110m + 50n - 110mn = 72(1 + {m^2} + {n^2})}\\{ \Leftrightarrow 49{m^2} - 110m + 50n - 110mn - 47{n^2} - 47 = 0}\\{ \Leftrightarrow 49{m^2} - 110m(n + 1) - 47{n^2} + 50n - 47 = 0(1)}\\{{\rm{\Delta '}} = 3025{{(n + 1)}^2} - 49( - 47{n^2} + 50n - 47) = 5328{n^2} + 3600n + 5328 > 0}\end{array}\]
Phương trình (*) luôn có nghiệm
\[\begin{array}{*{20}{l}}{{\rm{d}}(B,(P)) = \frac{{\left| {1 + m(1 - 8) + n( - 9 - 2)} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }} = \frac{{\left| {1 - 7m - 11n} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }}}\\{ = > d(B,(P))\max = AB \Leftrightarrow \frac{{\left| {1 - 7m - 11n} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }} = 3\sqrt {19} \Leftrightarrow \sqrt {1 + {m^2} + {n^2}} = \frac{{\left| {1 - 7m - 11n} \right|}}{{3\sqrt {19} }}}\end{array}\]
Mặt khác\[\frac{{\left| {5 - 11m + 5n} \right|}}{{6\sqrt 2 }} = \sqrt {1 + {m^2} + {n^2}} \]
\[\frac{{\left| {1 - 7m - 11n} \right|}}{{3\sqrt {19} }} = \frac{{\left| {5 - 11m + 5n} \right|}}{{6\sqrt 2 }}\]
\[\begin{array}{*{20}{l}}{72(1 + 49{m^2} + 121{n^2} - 14m - 22n + 154mn) = 171(25 + 121{m^2} + 25{n^2} - 110m + 50n - 110mn)}\\{ \Leftrightarrow 8(1 + 49{m^2} + 121{n^2} - 14m - 22n + 154mn) = 19(25 + 121{m^2} + 25{n^2} - 110m + 50n - 110mn)}\\{ \Leftrightarrow - 1907{m^2} + 493{n^2} + 1978m - 1126n + 3322mn - 467 = 0(2)}\end{array}\]Từ (1) và (2)\[ \Rightarrow m.n = \frac{{276}}{{49}}\]
Đáp án cần chọn là: A
Câu 9:
Mặt phẳng (Oyz) cắt mặt cầu \[(S):{x^2} + {y^2} + {z^2} + 2x - 2y + 4z - 3 = 0\] theo một đường tròn có tọa độ tâm là
Phương trình mặt phẳng\[(Oyz):x = 0\]nên ta loại được đáp án A.
Véc tơ pháp tuyến của\[\left( {Oyz} \right):\vec n = (1;0;0)\]
Tọa độ của mặt cầu (S) là \[I\left( { - 1;1; - 2} \right)\]
Gọi điểm O là điểm cần tìm có\[O\left( {0;b;c} \right)\]
Do IO vuông góc với (Oyz) nên\[\overrightarrow {OI} \]cùng phương với\[\vec n = (1;0;0)\]
Suy ra\[b = 1;c = - 2\]
Đáp án cần chọn là: D
Câu 10:
Viết phương trình mặt cầu có tâm I(−1;2;3) và tiếp xúc với mặt phẳng (P):2x−y−2z+1=0
Khoảng cách từ I đến (P) được tính theo công thức
\[d\left( {I;\left( P \right)} \right) = \frac{{\left| {2.\left( { - 1} \right) - 2 - 2.3 + 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = 3\]
Phương trình mặt cầu cần tìm là \[{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\]
Đáp án cần chọn là: D
Câu 11:
Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) đi qua hai điểm A(1;2;1);B(3;2;3), có tâm thuộc mặt phẳng (P):x−y−3=0 , đồng thời có bán kính nhỏ nhất, hãy tính bán kính R của mặt cầu (S)?
Gọi I là tâm mặt cầu\[\left( S \right),I\left( {a,b,c} \right)\]
Suy ra\[a - b - 3 = 0 \Rightarrow a = b + 3 \Rightarrow I(b + 3;b;c)\]
\[I{A^2} = I{B^2} = {R^2} \Leftrightarrow {(b + 2)^2} + {(b - 2)^2} + {(c - 1)^2} = {b^2} + {(b - 2)^2} + {(c - 3)^2}\]
\[\begin{array}{*{20}{l}}{ \Leftrightarrow {{\left( {b + 2} \right)}^2} + {{\left( {c - 1} \right)}^2} = {b^2} + {{\left( {c - 3} \right)}^2}}\\{ \Leftrightarrow {b^2} + 4b + 4 + {c^2} - 2c + 1 = {b^2} + {c^2} - 6c + 9}\\{ \Leftrightarrow 4b + 4c - 4 = 0}\\{ \Leftrightarrow b + c - 1 = 0 \Leftrightarrow c = 1 - b}\end{array}\]
\[{R^2} = {\left( {b + 2} \right)^2} + {\left( {b - 2} \right)^2} + {\left( { - b} \right)^2} = 3{b^2} + 8 \ge 8 \Rightarrow R \ge 2\sqrt 2 \]
\[\min R = 2\sqrt 2 \]khi b=0
Đáp án cần chọn là: D
Câu 12:
Trong không gian với hệ tọa độ Oxyz,(α) cắt mặt cầu (S) tâm I(1;−3;3) theo giao tuyến là đường tròn tâm H(2;0;1) , bán kính r=2 . Phương trình (S) là:
Gọi E là một điểm thuộc đường tròn.
Ta có\[IH = d\left( {I,(\alpha )} \right);\,R = IE;\,r = HE\]
\[IH = \sqrt {1 + {3^2} + {{( - 2)}^2}} = \sqrt {14} \]
Tam giác IHE vuông tại H nên\[IE = \sqrt {I{H^2} + H{E^2}} = \sqrt {14 + 4} = \sqrt {18} \]
Suy ra phương trình mặt cầu (S) là:
\[{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 3} \right)^2} = 18\]
Đáp án cần chọn là: A
Câu 13:
Trong không gian với hệ tọa độ Oxyz , phương trình nào dưới đây là phương trình mặt cầu tâm I(−3;2;−4) và tiếp xúc với mặt phẳng (Oxz)?
Vì mặt cầu có tâm\[I( - 3;2; - 4)\]tiếp xúc với mp(Oxz) nên r=2.
Phương trình mặt cầu cần tìm là : \[{\left( {x + 3} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 4} \right)^2} = 4\]
Đáp án cần chọn là: C
Câu 14:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x + 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 25\] và mặt phẳng \[(\alpha ):2x + y - 2z + m = \;0\]. Tìm các giá trị của m để \[\left( \alpha \right)\;\]và (S) không có điểm chung.
Mặt cầu (S) có tâm I(−1;2;3) bán kính R=5.
Để mặt cầu với mặt phẳng không có điểm chung thì khoảng cách từ tâm mặt cầu đến mặt phẳng lớn hơn bán kính mặt cầu.
Ta có
\[d(I,(\alpha )) > 5 \Leftrightarrow \frac{{|2.( - 1) + 2 - 2.3 + m|}}{{\sqrt {{2^2} + {1^2} + {{( - 2)}^2}} }} > 5\]
\[ \Leftrightarrow |m - 6| > 15 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m - 6 > 15}\\{m - 6 < - 15}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m > 21}\\{m < - 9}\end{array}} \right.\]
Đáp án cần chọn là: A
Câu 15:
Mặt cầu (S) có tâm I(−1;2;−5) cắt mặt phẳng \[(P):2x - 2y - z + 10 = 0\;\]theo thiết diện là hình tròn có diện tích \[3\pi \]. Phương trình của (S) là:
Gọi O là tâm của đường tròn thiết diện, E là một điểm thuộc đường tròn.
Ta có: \[IO = d\left( {I,(P)} \right);R = IE\]
\[IO = d\left( {I,(P)} \right) = \frac{{|2.( - 1) - 2.2 + 5 + 10|}}{{\sqrt {{2^2} + {2^2} + 1} }} = 3\]
\[S = 3\pi = \pi .O{E^2} \Leftrightarrow O{E^2} = 3\]
Tam giác IOE vuông tại O nên\[{R^2} = I{E^2} = I{O^2} + O{E^2} = 3 + 9 = 12.\]
Suy ra phương trình mặt cầu (S) là:
\[{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 5} \right)^2} = 12\]
hay\[{x^2} + {y^2} + {z^2} + 2x - 4y + 10z + 18 = 0\]
Đáp án cần chọn là: A
Câu 16:
Trong không gian vớ hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;−1) và đi qua điểm A(2;1;2). Mặt phẳng nào dưới đây tiếp xúc với (S) tại A?
(P) là mặt phẳng tiếp xúc với (S) tại A nếu và chỉ nếu (P) đi qua A và\[\overrightarrow {IA} \bot \left( P \right)\]
Ta có:\[\overrightarrow {IA} = ( - 1; - 1;3)\] là vec tơ pháp tuyến của mặt phẳng (P).
Mà (P) lại đi qua A(2;1;2) nên:\[\left( P \right): - 1\left( {x - 2} \right) - 1\left( {y - 1} \right) + 3\left( {z - 2} \right) = 0 \Leftrightarrow x + y - 3z + 3 = 0\]
Đáp án cần chọn là: D
Câu 17:
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng \[(P):x - 2y + 2z - 3 = 0\;\]và mặt cầu \[(S):{x^2} + {y^2} + {z^2} + 2x - 4y - 2z + 5 = 0\]. Giả sử \[M \in \left( P \right)\;\] và \[N \in \left( S \right)\;\] sao cho \(\overrightarrow {MN} \)cùng phương với vectơ \[\overrightarrow u = \left( {1;0;1} \right)\;\]và khoảng cách MN lớn nhất. Tính MN
(S) có tâm I(–1;2;1) và R=1.
Gọi \[\vec v\left( {t;0;t} \right)\] là vectơ cùng phương với vectơ\[\vec u\left( {1;0;1} \right)\] sao cho phép tịnh tiến vectơ đó biến (S) thành (S′) tiếp xúc với (P)
Phép tịnh tiến vectơ \[\vec v\left( {t;0;t} \right)\] biến I thành\[I'(--1 + t;2;1 + t)\]
Suy ra (S′) có tâm I′ và bán kính\[R' = R = 1\]
(S′) tiếp xúc (P)
\[ \Leftrightarrow d(I;(P)) = 1 \Leftrightarrow \frac{{| - 1 + t - 2.2 + 2(1 + t) - 3|}}{{\sqrt {1 + 4 + 4} }} = 1\]
\[ \Leftrightarrow |3t - 6| = 3 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = 3}\\{t = 1}\end{array}} \right.\]
Với \[t = 3 \Rightarrow \vec v\left( {3;0;3} \right) \Rightarrow \left| {\vec v} \right| = 3\sqrt 2 \]
Với\[t = 1 \Rightarrow \vec v\left( {1;0;1} \right) \Rightarrow \left| {\vec v} \right| = \sqrt 2 \]
Vậy giá trị lớn nhất của MN là \[3\sqrt 2 \]
Đáp án cần chọn là: C
Câu 18:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{x^2} + {y^2} + {z^2} + 2x - 4y + 6z + 5 = 0\]. Tiếp diện của (S) tại điểm M(−1;2;0) có phương trình là:
Mặt cầu (S) có tâm I(−1;2;−3) và bán kính R=3
Ta có : \[M( - 1;2;0) \in \left( S \right)\]
Gọi \[\left( \alpha \right)\]là mặt phẳng tiếp diện của (S) tại M.
Khi đó \[\left( \alpha \right)\] đi qua M và nhận\[\overrightarrow {IM} \left( {0;0;3} \right)\] làm véctơ pháp tuyến
Vậy\[\left( \alpha \right):0(x + 1) + 0(y - 2) + 3(z - 0) = 0 \Leftrightarrow z = 0\]
Đáp án cần chọn là: D
Câu 19:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{x^2} + {y^2} + {z^2} + 6x - 4z + 9 - {m^2} = 0\]. Gọi T là tập các giá trị của m để mặt cầu (S) tiếp xúc với mặt phẳng (Oyz). Tích các giá trị của mm trong T bằng:
Mặt cầu\[\left( S \right):{x^2} + {y^2} + {z^2} + 6x - 4z + 9 - {m^2} = 0\]có tâm\[I\left( { - 3;0;2} \right)\]và bán kính \[R = \sqrt {{m^2} + 4} \]
Mặt phẳng (Oyz) có phương trình là \[x = 0 \Rightarrow d\left( {I;\left( {Oyz} \right)} \right) = \frac{{\left| { - 3} \right|}}{1} = 3\]
\[ \Rightarrow R = \sqrt {{m^2} + 4} = 3 \Leftrightarrow m = \pm \sqrt 5 \]
Tích các giá trị của m là\[\sqrt 5 .\left( { - \sqrt 5 } \right) = - 5\]
Đáp án cần chọn là: A
Câu 20:
Trong không gian Oxyz, cho đường thẳng \[\Delta :\frac{{x - 1}}{{ - 2}} = \frac{y}{2} = \frac{{z - 2}}{1}\;\] và mặt phẳng \[(P):2x - y + z - 3 = 0\]. Gọi (S) là mặt cầu có tâm I thuộc Δ và tiếp xúc với (P) tại điểm H(1;−1;0). Phương trình của (S) là:
Vì\[I \in {\rm{\Delta }}:\,\,\frac{{x - 1}}{{ - 2}} = \frac{y}{2} = \frac{{z - 2}}{1}\]nên ta gọi \[I\left( {1 - 2t;\,\,2t;\,\,2 + t} \right)\]
Vì (S) tiếp xúc với\[\left( P \right):\,\,2x - y + z - 3 = 0\]tại điểm H(1;−1;0) nên ta có:\[d\left( {I;\left( P \right)} \right) = IH = R\]
\[ \Leftrightarrow \frac{{\left| {2.\left( {1 - 2t} \right) - 2t + 2 + t - 3} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \sqrt {{{\left( {2t} \right)}^2} + {{\left( { - 1 - 2t} \right)}^2} + {{\left( { - 2 - t} \right)}^2}} \]
\[ \Leftrightarrow \frac{{\left| { - 5t + 1} \right|}}{{\sqrt 6 }} = \sqrt {9{t^2} + 8t + 5} \]
\[ \Leftrightarrow 25{t^2} - 10t + 1 = 54{t^2} + 48t + 30\]
\[ \Leftrightarrow 29{t^2} + 58t + 29 = 0\]
\[ \Leftrightarrow {t^2} + 2t + 1 = 0\]
\[ \Leftrightarrow {\left( {t + 1} \right)^2} = 0\]
\[ \Leftrightarrow t = - 1\]
\[ \Rightarrow I\left( {3; - 2;1} \right)\]và \[R = IH = \sqrt 6 \]
Vậy phương trình mặt cầu (S) là:\[{\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 6\]
Đáp án cần chọn là: C
Câu 21:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{x^2} + {y^2} + {z^2} - 8x + 2y + 2z - 3 = 0\;\]và đường thẳng \[\Delta :\frac{{x - 1}}{3} = \frac{y}{{ - 2}} = \frac{{z + 2}}{{ - 1}}\]. Mặt phẳng \[\left( \alpha \right)\;\]vuông góc với \[\Delta \] và cắt (S) theo giao tuyến là đường tròn (C) có bán kính lớn nhất. Phương trình \[\left( \alpha \right)\;\]là:
Đường thẳng\[{\rm{\Delta }}:\,\,\frac{{x - 1}}{3} = \frac{y}{{ - 2}} = \frac{{z + 2}}{{ - 1}}\] có 1 VTCP là\[\vec u = \left( {3; - 2; - 1} \right)\]
Vì\[\left( \alpha \right) \bot {\rm{\Delta }}\] nên mặt phẳng\[\left( \alpha \right)\] có 1 VTPT là\[\vec n = \vec u = \left( {3; - 2; - 1} \right)\]. Khi đó phương trình mặt phẳng\[\left( \alpha \right)\] có dạng\[3x - 2y - z + d = 0\]
Mặt cầu\[\left( S \right):\,\,{x^2} + {y^2} + {z^2} - 8x + 2y + 2z - 3 = 0\] có tâm\[I\left( {4; - 1; - 1} \right)\] bán kính\[R = \sqrt {16 + 1 + 1 + 3} = \sqrt {21} \]
Gọi r là bán kính đường tròn \[\left( C \right),d = d\left( {I;\left( \alpha \right)} \right)\]
Áp dụng định lí Pytago ta có:\[{R^2} = {r^2} + {d^2}\], do đó để rr đạt GTLN thì dd phải đạt GTNN (vì\[R = \sqrt {21} \] không đổi).
Ta có:\[d = \frac{{\left| {3.4 - 2.\left( { - 1} \right) - 1.\left( { - 1} \right) + d} \right|}}{{\sqrt {{3^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\left| {15 + d} \right|}}{{\sqrt {14} }} \ge 0\] suy ra\[{d_{\min }} = 0 \Leftrightarrow d = - 15\]
Vậy phương trình mặt phẳng \[\left( \alpha \right)\]cần tìm là:\[3x - 2y - z - 15 = 0\]
Đáp án cần chọn là: D