IMG-LOGO

Bất phương trình logarit

Bất phương trình logarit

  • 1280 lượt thi

  • 27 câu hỏi

  • 45 phút

Danh sách câu hỏi

Câu 1:

Bất phương trình  \[{\log _{\frac{4}{{25}}}}(x + 1) \ge {\log _{\frac{2}{5}}}x\] tương đương với bất phương trình nào dưới đây?

Xem đáp án

Ta có \[{\log _{\frac{4}{{25}}}}\left( {x + 1} \right) = \frac{1}{2}{\log _{\frac{2}{5}}}\left( {x + 1} \right)\]nên bất phương trình đã cho tương đương với:

\[\frac{1}{2}{\log _{\frac{2}{5}}}\left( {x + 1} \right) \ge {\log _{\frac{2}{5}}}x \Leftrightarrow {\log _{\frac{2}{5}}}\left( {x + 1} \right) \ge 2{\log _{\frac{2}{5}}}x\]

Đáp án cần chọn là: C


Câu 2:

Số nguyên nhỏ nhất thỏa mãn \[{\log _2}\left( {5x - 3} \right) > 5\] là:

Xem đáp án

Điều kiện:\[x > \frac{3}{5}\]

\[{\log _2}\left( {5x - 3} \right) > 5 \Leftrightarrow 5x - 3 > {2^5} \Leftrightarrow 5x > 35 \Leftrightarrow x > 7\]

Vậy số nguyên nhỏ nhất thỏa mãn bất phương trình là x=8.

Đáp án cần chọn là: B


Câu 3:

Tìm tập nghiệm S của bất phương trình \[{\log _{\frac{1}{2}}}\left( {x - 1} \right) > {\log _{\frac{1}{2}}}\left( {5 - 2x} \right)\]

Xem đáp án

Điều kiện\(\left\{ {\begin{array}{*{20}{c}}{x - 1 > 0}\\{5 - 2x > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > 1}\\{x < \frac{5}{2}}\end{array}} \right.\)

\[{\log _{\frac{1}{2}}}\left( {x - 1} \right) > {\log _{\frac{1}{2}}}\left( {5 - 2x} \right) \Leftrightarrow x - 1 < 5 - 2x \Leftrightarrow x < 2\]

Kết hợp với điều kiện suy ra\[S = (1;2)\]

Đáp án cần chọn là: D


Câu 4:

Tìm tất cả các giá trị thực của tham số m để bất phương trình \[4.{\left( {{{\log }_2}\sqrt x } \right)^2} + {\log _2}x + m \ge 0\]nghiệm đúng với mọi giá trị \[x \in \left[ {1;64} \right]\]

Xem đáp án

Điều kiện : \[x > 0\]\[4.{\left( {{{\log }_2}\sqrt x } \right)^2} + {\log _2}x + m \ge 0 \Leftrightarrow 4.{\left( {{{\log }_2}\sqrt x } \right)^2} + 2.{\log _2}\sqrt x \ge - m\](1)

Đặt\[t = {\log _2}\sqrt x \] Khi\[x \in \left[ {1;64} \right] \Rightarrow t \in \left[ {0;3} \right]\]

Ta có bất phương trình\[4{t^2} + 2t \ge - m\]

Xét\[f(t) = 4{t^2} + 2t;f'(t) = 8t + 2 > 0,\forall t \in \left[ {0;3} \right]\]

Để (1) nghiệm đúng với\[\forall t \in \left[ {0;3} \right]\] thì\[\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( t \right) \ge - m\]

\[ \Leftrightarrow f(0) \ge - m \Leftrightarrow 0 \ge - m \Leftrightarrow m \ge 0\]

Đáp án cần chọn là: C


Câu 5:

Tập nghiệm của bất phương trình \[\ln \left[ {\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) + 1} \right] > 0\] là:

Xem đáp án

\[\begin{array}{*{20}{l}}\begin{array}{l}\ln \left[ {\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) + 1} \right] > 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) + 1 > 1\end{array}\\{ \Leftrightarrow \left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right) > 0}\end{array}\]

Tập nghiệm của bất phương trình (ảnh 1)

\[ \Rightarrow x \in (1;2) \cup (3; + \infty )\]

Đáp án cần chọn là: A


Câu 6:

Tập nghiệm của bất phương trình \[\log \left( {{x^2} + 25} \right) > \log \left( {10x} \right)\] là:

Xem đáp án

Điều kiện:\[x > 0\]

\[\log ({x^2} + 25) > \log (10x) \Leftrightarrow {x^2} + 25 > 10x \Leftrightarrow {(x - 5)^2} > 0 \Leftrightarrow x \ne 5\]

Tập nghiệm của bất phương trình là:\[(0;5) \cup (5; + \infty )\]

Đáp án cần chọn là: B


Câu 7:

Tập nghiệm của bất phương trình \[({2^{{x^2} - 4}} - 1).\ln {x^2} < 0\]là:

Xem đáp án

Điều kiện:\[x \ne 0\]

\[({2^{{x^2} - 4}} - 1)ln{x^2} < 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{({2^{{x^2} - 4}} - 1) > 0}\\{ln{x^2} < 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{({2^{{x^2} - 4}} - 1) < 0}\\{ln{x^2} > 0}\end{array}} \right.}\end{array}} \right.\]</></>

\(\begin{array}{l} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{{2^{{x^2} - 4}} > 1}\\{{x^2} < 1}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{{2^{{x^2} - 4}} < 1}\\{{x^2} > 1}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{{x^2} - 4 > 0}\\{{x^2} < 1}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{{x^2} - 4 < 0}\\{{x^2} > 1}\end{array}} \right.}\end{array}} \right.\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{x > 2;x < - 2}\\{ - 1 < x < 1}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{ - 2 < x < 2}\\{x > 1;x < - 1}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - 2 < x < - 1}\\{1 < x < 2}\end{array} \Rightarrow x \in ( - 2; - 1) \cup (1;2)} \right.\end{array}\)

Đáp án cần chọn là: B


Câu 8:

Tập hợp nghiệm của bất phương trình \(\)\[{\log _{\frac{1}{3}}}\left( {{x^2} - 2x + 1} \right) < {\log _{\frac{1}{3}}}\left( {x - 1} \right)\] là:

Xem đáp án

Điều kiện:\(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 2x + 1 > 0}\\{x - 1 > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{(x - 1)}^2} > 0}\\{x - 1 > 0}\end{array}} \right. \Leftrightarrow x > 1\)

\[{\log _{\frac{1}{3}}}({x^2} - 2x + 1) < {\log _{\frac{1}{3}}}(x - 1) \Leftrightarrow {x^2} - 2x + 1 > x - 1 > 0\]</>

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x^2} - 3x + 2 > 0}\\{x - 1 > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{(x - 1)(x - 2) > 0}\\{x - 1 > 0}\end{array}} \right. \Leftrightarrow x > 2\)

Đáp án cần chọn là: C


Câu 9:

Tập nghiệm của phương trình \[{\log _3}\left( {{{\log }_{\frac{1}{2}}}x} \right) < 1\] là

Xem đáp án

Điều kiện:\[x > 0;{\log _{\frac{1}{2}}}x > 0 \Rightarrow x < {\left( {\frac{1}{2}} \right)^0} = 1\]

\[{\log _3}\left( {{{\log }_{\frac{1}{2}}}x} \right) < 1 = {\log _3}3 \Leftrightarrow {\log _{\frac{1}{2}}}x < 3 = {\log _{\frac{1}{2}}}{\left( {\frac{1}{2}} \right)^3}\]

\[ \Leftrightarrow x > {\left( {\frac{1}{2}} \right)^3} = \frac{1}{8}\] vì\(\frac{1}{2} < 1\)

Đáp án cần chọn là: B


Câu 10:

Nghiệm của bất phương trình \[{\log _2}(x + 1) + {\log _{\frac{1}{2}}}\sqrt {x + 1} \le 0\] là :

Xem đáp án

Điều kiện\[x > - 1\]

Khi đó ta có:

\[\begin{array}{*{20}{l}}{{{\log }_2}(x + 1) - lo{g_2}\sqrt {x + 1} \le 0 \Leftrightarrow {{\log }_2}\frac{{x + 1}}{{\sqrt {x + 1} }} \le 0 \Leftrightarrow \frac{{x + 1}}{{\sqrt {x + 1} }} \le 1}\\{ \Leftrightarrow \frac{{{{(\sqrt {x + 1} )}^2}}}{{\sqrt {x + 1} }} \le 1 \Leftrightarrow \sqrt {x + 1} \le 1 \Leftrightarrow x \le 0}\end{array}\]

Kết hợp với điều kiện ta được:\[ - 1 < x \le 0\]

Đáp án cần chọn là: B


Câu 11:

Tìm tập hợp nghiệm S của bất phương trình: \[lo{g_{\frac{\pi }{4}}}({x^2} + 1) < lo{g_{\frac{\pi }{4}}}(2x + 4)\]

Xem đáp án

Điều kiện\[x > - 2\]

Bất phương trình \[ \Leftrightarrow {x^2} + 1 > 2x + 4\,(do\,\frac{\pi }{4} < 1)\]

\[ \Leftrightarrow {x^2} - 2x - 3 = (x + 1)(x - 3) > 0\]

Nên x>3 hoặc x<−1.

Kết hợp điều kiện x>−2 ta được x>3 hoặc −2<x<−1.

Đáp án cần chọn là: C


Câu 12:

Với m là tham số thực dương khác 1. Hãy tìm tập nghiệm S của bất phương trình

\[{\log _m}({2.1^2} + 1 + 3) \le {\log _m}({3.1^2} - 1) \Leftrightarrow {\log _m}6 \le {\log _m}2 \Leftrightarrow 0m < 1\]. Biết rằng  x=1x=1 là một nghiệm của bất phương trình.

Xem đáp án

Điều kiện: \(\left\{ {\begin{array}{*{20}{c}}{2{x^2} + x + 3 > 0}\\{3{x^2} - x > 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x > \frac{1}{3}}\\{x < 0}\end{array}} \right.\)

Do x=1 là một nghiệm của bất phương trình nên

\[{\log _m}({2.1^2} + 1 + 3) \le {\log _m}({3.1^2} - 1) \Leftrightarrow {\log _m}6 \le {\log _m}2 \Leftrightarrow 0 < m < 1\]

Khi đó, ta có:

\[\begin{array}{l}{\log _m}(2{x^2} + x + 3) \le {\log _m}(3{x^2} - x)\\ \Leftrightarrow 2{x^2} + x + 3 \ge 3{x^2} - x \Leftrightarrow {x^2} - 2x - 3 \le 0 \Leftrightarrow - 1 \le x \le 3\end{array}\]

Kết hợp với điều kiện xác định ta có nghiệm của bpt là :\[S = \left[ { - 1;0} \right) \cup \left( {\frac{1}{3};3} \right)\]
Đáp án cần chọn là: C


Câu 13:

Xác định tập nghiệm S của bất phương trình \[\ln {x^2} > \ln \left( {4x - 4} \right)\]

Xem đáp án

Điều kiện\[x > 1\]

\[\begin{array}{l}\ln {x^2} > \ln \left( {4x - 4} \right)\\ \Leftrightarrow {x^2} > 4x - 4\, \Leftrightarrow {(x - 2)^2} > 0 \Leftrightarrow x \ne 2\\S = \left( {1; + \infty } \right) \setminus \left\{ 2 \right\}\end{array}\]

Đáp án cần chọn là: A


Câu 14:

Tìm tập nghiệm S của bất phương trình \[{\log _{\frac{1}{2}}}\left( {x + 2} \right) - {\log _{\frac{1}{{\sqrt 2 }}}}\left( x \right) > {\log _2}\left( {{x^2} - x} \right) - 1\]

Xem đáp án

Thử giá trị \[x = 3:{\log _{\frac{1}{2}}}\left( {x + 2} \right) - {\log _{\frac{1}{{\sqrt 2 }}}}\left( x \right) - {\log _2}\left( {{x^2} - x} \right) + 1 < 0\] Loại đáp án A

Thử giá trị  \[x = 2:{\log _{\frac{1}{2}}}\left( {x + 2} \right) - {\log _{\frac{1}{{\sqrt 2 }}}}\left( x \right) - {\log _2}\left( {{x^2} - x} \right) + 1 = 0\]Loại đáp án D

Thử giá trị x=0,5: MATH ERROR: Loại đáp án C

Đáp án cần chọn là: B


Câu 15:

Tập nghiệm của phương trình \[{\log _3}\left( {{{\log }_{\frac{1}{2}}}x} \right) < 1\] là

Xem đáp án

Điều kiện: \[x > 0;{\log _{\frac{1}{2}}}x > 0 \Rightarrow x < {\left( {\frac{1}{2}} \right)^0} = 1\]

\[{\log _3}\left( {{{\log }_{\frac{1}{2}}}x} \right) < 1 = {\log _3}3 \Leftrightarrow {\log _{\frac{1}{2}}}x < 3 = {\log _{\frac{1}{2}}}{\left( {\frac{1}{2}} \right)^3}\]

\[ \Leftrightarrow x > {\left( {\frac{1}{2}} \right)^3} = \frac{1}{8}\] vì \(\frac{1}{2} < 1\)

Đáp án cần chọn là: B


Câu 16:

Tập nghiệm của bất phương trình \[{\log _3}x \le {\log _{\frac{1}{3}}}(2x)\] là nửa khoảng \[(a;b]\]. Giá trị của \[{a^2} + {b^2}\;\] bằng

Xem đáp án

Điều kiện:\[x > 0\]

\[{\log _3}x \le {\log _{\frac{1}{3}}}(2x) \Leftrightarrow {\log _3}x \le - {\log _3}(2x)\]

\[ \Leftrightarrow {\log _3}x + {\log _3}(2x) \le 0\]

\[ \Leftrightarrow {\log _3}(2{x^2}) \le 0\]

\[ \Leftrightarrow 2{x^2} \le 1\]

\[ \Leftrightarrow - \frac{{\sqrt 2 }}{2} \le x \le \frac{{\sqrt 2 }}{2}\]

Kết hợp với x>0 ta được\[0 < x \le \frac{{\sqrt 2 }}{2}\]

Do đó\(\left\{ {\begin{array}{*{20}{c}}{a = 0}\\{b = \frac{{\sqrt 2 }}{2}}\end{array}} \right. \Rightarrow {a^2} + {b^2} = \frac{1}{2}\)

Đáp án cần chọn là: C


Câu 17:

Tập nghiệm của bất phương trình \[2017{\log _2}x \le {4^{{{\log }_2}9}}\]là

Xem đáp án

\[2017{\log _2}x \le {9^{{{\log }_2}4}} = 81\]

\[ \Leftrightarrow {\log _2}x = \frac{{81}}{{2017}} = > 0 < x \le \sqrt[{2017}]{{{2^{81}}}}\]

Đáp án cần chọn là: B


Câu 18:

Tập nghiệm của bất phương trình\[{\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\] là \(\left( { - \sqrt a ; - \sqrt b } \right)\).Khi đó abab bằng

Xem đáp án

Điều kiện :

\[x\sqrt {{x^2} + 2} + 4 - {x^2} > 0 \Leftrightarrow x\left( {\sqrt {{x^2} + 2} - x} \right) + 4 > 0 \Leftrightarrow x.\frac{2}{{\sqrt {{x^2} + 2} + x}} + 4 > 0\]

\[ \Leftrightarrow \frac{{2x}}{{\sqrt {{x^2} + 2} + x}} + \frac{{4\left( {\sqrt {{x^2} + 2} + x} \right)}}{{\sqrt {{x^2} + 2} + x}} > 0 \Rightarrow 6x + 4\sqrt {{x^2} + 2} > 0\] (vì \[\sqrt {{x^2} + 2} > x;\,\forall x\])

\[ \Leftrightarrow 2\sqrt {{x^2} + 2} > - 3x \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - 3x < 0}\\{\left\{ {\begin{array}{*{20}{c}}{ - 3x \ge 0}\\{4({x^2} + 2) > {{( - 3x)}^2}}\end{array}} \right.}\end{array}} \right.\]</>

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x > 0}\\{\left\{ {\begin{array}{*{20}{c}}{x \le 0}\\{5{x^2} < 8}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x > 0}\\{ - \frac{{\sqrt {40} }}{5} < x \le 0}\end{array}} \right.\)

Khi đó ta có\[{\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\]

\[\begin{array}{*{20}{l}}{ \Leftrightarrow {{\log }_2}\left( {x\left( {\sqrt {{x^2} + 2} - x} \right) + 4} \right) + 2x + \sqrt {{x^2} + 2} \le 1}\\{ \Leftrightarrow {{\log }_2}\left( {\frac{{2x}}{{\sqrt {{x^2} + 2} + x}} + 4} \right) + 2x + \sqrt {{x^2} + 2} \le 1}\\{ \Leftrightarrow {{\log }_2}\left( {\frac{{6x + 4\sqrt {{x^2} + 2} }}{{\sqrt {{x^2} + 2} + x}}} \right) + 2x + \sqrt {{x^2} + 2} \le 1}\end{array}\]

\[\begin{array}{l} \Leftrightarrow lo{g_2}(6x + 4\sqrt {{x^2} + 2} ) - lo{g_2}(\sqrt {{x^2} + 2 + x} ) + 2x + \sqrt {{x^2} + 2} \le 1\\ \Leftrightarrow lo{g_2}[2(3x + 2\sqrt {{x^2} + 2} )] - lo{g_2}(\sqrt {{x^2} + 2} + x) + 2x + \sqrt {{x^2} + 2} \le 1\\ \Leftrightarrow lo{g_2}2 + lo{g_2}(3x + 2\sqrt {{x^2} + 2} ) - lo{g_2}(\sqrt {{x^2} + 2} + x) + 2x + \sqrt {{x^2} + 2} \le 1\\ \Leftrightarrow 1 + lo{g_2}(3x + 2\sqrt {{x^2} + 2} ) - lo{g_2}(\sqrt {{x^2} + 2} + x) + 2x + \sqrt {{x^2} + 2} \le 1\\ \Leftrightarrow lo{g_2}(3x + 2\sqrt {{x^2} + 2} ) + 3x + 2\sqrt {{x^2} + 2} \le lo{g_2}(\sqrt {{x^2} + 2} + x) + x + \sqrt {{x^2} + 2} ( * )\end{array}\]

Xét hàm số \[f\left( t \right) = t + {\log _2}t\,\] với t>0 ta có \[f'\left( t \right) = 1 + \frac{1}{{t.\ln 2}} > 0;\,\forall t > 0\]  nên f(t) là hàm đồng biến trên\[\left( {0; + \infty } \right)\]Từ đó

\[\begin{array}{l}( * ) \Leftrightarrow f(3x + 2\sqrt {{x^2} + 2} ) \le f(\sqrt {{x^2} + 2} + x)\\ \Leftrightarrow 3x + 2\sqrt {{x^2} + 2} \le \sqrt {{x^2} + 2} + x\\ \Leftrightarrow \sqrt {{x^2} + 2} \le - 2x\end{array}\]

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 2x \ge 0}\\{{x^2} + 2 \le 4{x^2}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 0}\\{3{x^2} \ge 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 0}\\{\left[ {\begin{array}{*{20}{c}}{x \ge \frac{{\sqrt 6 }}{3}}\\{x \le - \frac{{\sqrt 6 }}{3}}\end{array}} \right.}\end{array}} \right. \Leftrightarrow x \le - \frac{{\sqrt 6 }}{3}\)

Kết hợp điều kiện \(\left[ {\begin{array}{*{20}{c}}{x > 0}\\{ - \frac{{\sqrt {40} }}{5} < x \le 0}\end{array}} \right.\) ta có\[ - \frac{{\sqrt {40} }}{5} < x \le - \frac{{\sqrt 6 }}{3}\] hay\[ - \sqrt {\frac{8}{5}} < x \le - \sqrt {\frac{2}{3}} \]

Tập nghiệm bất phương trình\[S = \left( { - \sqrt {\frac{8}{5}} ; - \sqrt {\frac{2}{3}} } \right]\] nên\[a = \frac{8}{5};b = \frac{2}{3} \Rightarrow a.b = \frac{8}{5}.\frac{2}{3} = \frac{{16}}{{15}}.\]

Đáp án cần chọn là: D


Câu 19:

Cho hàm số f(x) liên tục trên \(\mathbb{R}\) và có đồ thị f′(x) như hình vẽ bên. Bất phương trình \[{\log _5}\left[ {f\left( x \right) + m + 2} \right] + f\left( x \right) > 4 - m\] đúng với mọi \[x \in \left( { - 1;4} \right)\;\] khi và chỉ khi

Cho hàm số f(x) liên tục trên  (ảnh 1)

Xem đáp án

ĐK : \[f\left( x \right) + m + 2 > 0\]

Ta có\[{\log _5}\left( {f\left( x \right) + m + 2} \right) + f\left( x \right) > 4 - m\]

\[ \Leftrightarrow {\log _5}\left( {f\left( x \right) + m + 2} \right) + f\left( x \right) + m + 2 > 6\left( * \right)\]

Xét hàm số \[y = {\log _5}t + t\,\,\,\left( {t > 0} \right)\] có\[y' = \frac{1}{{t.\ln 5}} + 1 > 0\] với t>0

Nên hàm số\[y = {\log _5}t + t\] đồng biến trên\[\left( {0; + \infty } \right)\] lại có\[y\left( 5 \right) = {\log _5}5 + 5 = 6\]

Nên từ (*) suy ra

\[y\left( {f\left( x \right) + m + 2} \right) > y\left( 5 \right) \Leftrightarrow f\left( x \right) + m + 2 > 5 \Leftrightarrow f\left( x \right) > 3 - m\] (1)

Từ hình vẽ ta có BBT của hàm số f(x) như sau

Cho hàm số f(x) liên tục trên  (ảnh 2)

Từ hình vẽ ta có\[\mathop \smallint \limits_{ - 1}^1 \left| {f'\left( x \right)} \right|dx < \mathop \smallint \limits_1^4 \left| {f'\left( x \right)} \right|dx \Leftrightarrow \mathop \smallint \limits_{ - 1}^1 f'\left( x \right)dx < - \mathop \smallint \limits_1^4 f'\left( x \right)dx\]

\[ \Leftrightarrow f(x)|_{ - 1}^1 < - f(x)|_1^4 \Leftrightarrow f(1) - f( - 1) < f(1) - f(4)\,\,\,\,\;\left( 2 \right)\]

Từ (1) ; (2) và BBT ta thấy để phương trình đã cho đúng với \[x \in \left( { - 1;4} \right)\] suy ra\[3 - m \le f\left( 4 \right) \Leftrightarrow m \ge 3 - f\left( 4 \right).\]

Đáp án cần chọn là: D


Câu 20:

Cho phương trình \[{\log _7}\left( {{x^2} + 2x + 2} \right) + 1 > {\log _7}\left( {{x^2} + 6x + 5 + m} \right)\]. Có tất cả bao nhiêu giá trị nguyên của tham số m để bất phương trình trên có tập nghiệm chứa khoảng (1;3)?

Xem đáp án

ĐK:\[{x^2} + 6x + 5 + m > 0.\]

\[\begin{array}{*{20}{l}}{{{\log }_7}\left( {{x^2} + 2x + 2} \right) + 1 > {{\log }_7}\left( {{x^2} + 6x + 5 + m} \right)}\\{ \Leftrightarrow {{\log }_7}7\left( {{x^2} + 2x + 2} \right) > {{\log }_7}\left( {{x^2} + 6x + 5 + m} \right)}\\{ \Leftrightarrow 7\left( {{x^2} + 2x + 2} \right) > {x^2} + 6x + 5 + m}\\{ \Leftrightarrow 7{x^2} + 14x + 14 - {x^2} - 6x - 5 - m > 0}\\{ \Leftrightarrow 6{x^2} + 8x + 9 - m > 0}\end{array}\]

Bất phương trình đã cho có tập nghiệm chứa (1;3)

\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x^2} + 6x + 5 + m > 0,\forall x \in (1;3)}\\{6{x^2} + 8x + 9 - m > 0,\forall x \in (1;3)}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m > - {x^2} - 6x - 5,\forall x \in (1;3)}\\{m < 6{x^2} + 8x + 9,\forall x \in (1;3)}\end{array}} \right.\left( * \right)\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m \ge \mathop {max}\limits_{[1;3]} f(x)}\\{m \le \mathop {min}\limits_{[1;3]} g(x)}\end{array}} \right.\end{array}\)

với\[f\left( x \right) = - {x^2} - 6x - 5\] và\[g\left( x \right) = 6{x^2} + 8x + 9\]

Ta có:\[f'\left( x \right) = - 2x - 6 = 0 \Leftrightarrow x = - 3 \notin \left( {1;3} \right)\] và\[f'\left( x \right) < 0,\forall x \in \left( {1;3} \right)\] nên hàm số\[y = f\left( x \right)\] nghịch biến trên \[\left( {1;3} \right)\]

\[ \Rightarrow \mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = f\left( 1 \right) = - 12 \Rightarrow m \ge - 12\]

\[g'\left( x \right) = 12x + 8 = 0 \Leftrightarrow x = - \frac{2}{3} \notin \left( {1;3} \right)\] và \[g'\left( x \right) > 0,\forall x \in \left( {1;3} \right)\] nên hàm số\[y = g\left( x \right)\] đồng biến trên (1;3)

\[ \Rightarrow \mathop {\min }\limits_{\left[ {1;3} \right]} g\left( x \right) = g\left( 1 \right) = 23 \Rightarrow m \le 23\]

Vậy\[ - 12 \le m \le 23\]

Mà\[m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 12; - 11;...;23} \right\}\] hay có\[23 - \left( { - 12} \right) + 1 = 36\] giá trị.

Đáp án cần chọn là: A


Câu 21:

Tập nghiệm của bất phương trình \[{9^{\log _9^2x}} + {x^{{{\log }_9}x}} \le 18\]là:

Xem đáp án

ĐKXĐ: x>0.

Ta có:

\[\begin{array}{*{20}{l}}{{9^{\log _9^2x}} + {x^{{{\log }_9}x}} \le 18}\\{ \Leftrightarrow {9^{{{\log }_9}x.{{\log }_9}x}} + {x^{{{\log }_9}x}} \le 18}\\{ \Leftrightarrow {{\left( {{9^{{{\log }_9}x}}} \right)}^{{{\log }_9}x}} + {x^{{{\log }_9}x}} \le 18}\\{ \Leftrightarrow {x^{{{\log }_9}x}} + {x^{{{\log }_9}x}} \le 18}\\{ \Leftrightarrow 2.{x^{{{\log }_9}x}} \le 18}\\{ \Leftrightarrow {x^{{{\log }_9}x}} \le 9}\end{array}\]

Lấy logarit cơ số 9 cả 2 vế bất phương trình ta được:

\[\begin{array}{*{20}{l}}{{{\log }_9}\left( {{x^{{{\log }_9}x}}} \right) \le {{\log }_9}9}\\{ \Leftrightarrow {{\log }_9}x.{{\log }_9}x \le 1}\\{ \Leftrightarrow \log _9^2x \le 1}\\{ \Leftrightarrow - 1 \le {{\log }_9}x \le 1}\\{ \Leftrightarrow \frac{1}{9} \le x \le 9}\end{array}\]

Kết hợp điều kiện xác định ta có\[x \in \left[ {\frac{1}{9};9} \right]\]

Vậy tập nghiệm của bất phương trình là: \[S = \left[ {\frac{1}{9};9} \right]\]Đáp án cần chọn là: B


Câu 22:

Cho hàm số y=f(x). Hàm số y=f′(x) có đồ thị như hình bên. Biết \[f\left( { - 1} \right) = 1,f( - \frac{1}{e}) = 2.\]. Tìm tất cả các giá trị của m để bất phương trình \[f(x) < ln( - x) + m\;\] nghiệm đúng với mọi \[x \in ( - 1; - \frac{1}{e}).\]

Cho hàm số y=f(x). Hàm số y=f′(x) có đồ thị như hình bên. Biết  (ảnh 1)

Xem đáp án

ĐKXĐ: \[ - x > 0 \Leftrightarrow x < 0\]

Ta có: \[f\left( x \right) < \ln \left( { - x} \right) + m \Leftrightarrow m > f\left( x \right) - \ln \left( { - x} \right)\left( * \right)\]</>

Xét hàm số \[g\left( x \right) = f\left( x \right) - \ln \left( { - x} \right)\] trên khoảng \[\left( { - 1; - \frac{1}{e}} \right)\] có:

\[\,g'\left( x \right) = f'\left( x \right) - \frac{{ - 1}}{{ - x}} = f'\left( x \right) - \frac{1}{x}\]

Ta biểu diễn đồ thị hàm số\[y = \frac{1}{x}\] (nét màu đỏ) trên hình vẽ như sau:

Cho hàm số y=f(x). Hàm số y=f′(x) có đồ thị như hình bên. Biết  (ảnh 2)

Quan sát đồ thị hàm số ta thấy

\[\,g'\left( x \right) = f'\left( x \right) - \frac{1}{x} > 0,\,\,\forall x \in \left( { - 1; - \frac{1}{e}} \right) \Rightarrow \] Hàm số\[y = g\left( x \right)\] đồng biến trên\[\left( { - 1; - \frac{1}{e}} \right)\]

Ta có:\(\left\{ {\begin{array}{*{20}{c}}{g( - 1) = f( - 1) - ln(1) = 1}\\{g( - \frac{1}{e}) = f( - \frac{1}{e}) - ln\frac{1}{e} = 2 + 1 = 3}\end{array}} \right.\)

Để (*) nghiệm đúng với mọi\[x \in \left( { - 1; - \frac{1}{e}} \right)\] thì \[ \Leftrightarrow m \ge \mathop {max}\limits_{\left[ { - 1; - \frac{1}{e}} \right]} g\left( x \right) \Leftrightarrow m \ge 3.\]

Đáp án cần chọn là: B


Câu 23:

Có tất cả bao nhiêu giá trị nguyên của y sao cho tương ứng với mọi y luôn tồn tại không quá 63 số nguyên x thỏa mãn điều kiện \[{\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) \ge {\log _4}\left( {x - y} \right)\]

Xem đáp án

Bước 1: Đặt\[f\left( x \right) = {\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) - {\log _4}\left( {x - y} \right)\] và tìm điều kiện xác định.

Đặt\[f\left( x \right) = {\log _{2020}}\left( {x + {y^2}} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) - {\log _4}\left( {x - y} \right)\] (coi yy là tham số).

Điều kiện xác định của f(x) là:

\(\left\{ {\begin{array}{*{20}{c}}{x + {y^2} > 0}\\{{y^2} + y + 64 > 0}\\{x - y > 0}\end{array}} \right.\)

Do x,y nguyên nên\[x > y \ge - {y^2}\] Cũng vì x,y nguyên nên ta chỉ xét f(x) trên nửa khoảng \[\left[ {y + 1; + \infty } \right)\]

Bước 2: Xét hàm số trên\[\left[ {y + 1; + \infty } \right)\]

Ta có:

\[f'\left( x \right) = \frac{1}{{\left( {x + {y^2}} \right)\ln 2020}} - \frac{1}{{\left( {x - y} \right)\ln 2021}} - \frac{1}{{\left( {x - y} \right)\ln 4}} < 0,\;\forall x \ge y + 1\]

Bước 3: Lập bảng biến thiên

Ta có bảng biến thiên của hàm số f(x):

Có tất cả bao nhiêu giá trị nguyên của y sao cho tương ứng với mọi y luôn tồn tại không quá 63 số nguyên x thỏa mãn điều kiện (ảnh 1)

Bước 4: Tìm y nguyên \[f\left( {y + 64} \right) < 0\]

Yêu cầu bài toán trở thành:

\[f\left( {y + 64} \right) < 0\]

\[ \Leftrightarrow {\log _{2020}}\left( {{y^2} + y + 64} \right) + {\log _{2021}}\left( {{y^2} + y + 64} \right) < {\log _4}64\]

\[ \Leftrightarrow {\log _{2021}}\left( {{y^2} + y + 64} \right)\left( {{{\log }_{2020}}2021 + 1} \right) < 3\]

\[ \Leftrightarrow {y^2} + y + 64 - {2021^{\frac{3}{{{{\log }_{2020}}2021 + 1}}}} < 0\]

\[ \Leftrightarrow - 301,76 < y < 300,76\]

Mà y nguyên nên\[y \in \left\{ { - 301; - 300; \ldots ;299;300} \right\}\]

Vậy có 602 giá trị nguyên của yy thỏa mãn yêu cầu.


Câu 24:

Xét bất phương trình \[\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\]. Tìm tất cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng \[\left( {\sqrt 2 ; + \infty } \right).\]

Xem đáp án

Điều kiện: x>0

\[\log _2^22x - 2\left( {m + 1} \right){\log _2}x - 2 < 0\]

\[ \Leftrightarrow {\left( {1 + {{\log }_2}x} \right)^2} - 2\left( {m + 1} \right){\log _2}x - 2 < 0\left( 1 \right)\]

Đặt \[t = {\log _2}x\]Vì\[x > \sqrt 2 \]nên\[{\log _2}x > {\log _2}\sqrt 2 = \frac{1}{2}\]

Do đó\[t \in \left( {\frac{1}{2}; + \infty } \right)\]

(1) thành\[{\left( {1 + t} \right)^2} - 2\left( {m + 1} \right)t - 2 < 0 \Leftrightarrow {t^2} - 2mt - 1 < 0\left( 2 \right)\]

Yêu cầu bài toán tương đương tìm m để bpt (2) có nghiệm thuộc\[\left( {\frac{1}{2}; + \infty } \right)\]

Xét bất phương trình (2) có: \[{\rm{\Delta '}} = {m^2} + 1 > 0,\forall m \in \mathbb{R}\]

\[f\left( t \right) = {t^2} - 2mt - 1 = 0\]có ac<0 nên f(t) luôn có 2 nghiệm phân biệt\[{t_1} < 0 < {t_2}\]nên tập nghiệm của (2) là\[({t_1};{t_2})\]

Khi đó cần\[\frac{1}{2} < {t_2} \Leftrightarrow m + \sqrt {{m^2} + 1} > \frac{1}{2} \Leftrightarrow m > - \frac{3}{4}\]

Đáp án cần chọn là: C


Câu 25:

Cho \[m = {\log _a}\sqrt {ab} \] với a,b>1 và \[P = \log _a^2b + 54{\log _b}a\]. Khi đó giá trị của m để P đạt giá trị nhỏ nhất là:

Xem đáp án

Ta có \[P = \log _a^2b + 54{\log _b}a = \log _a^2b + \frac{{54}}{{{{\log }_a}b}}\]

Đặt\[t = {\log _a}b\] thì \[P = {t^2} + \frac{{54}}{t}\]

Vì a,b>1 nên\[t = {\log _a}b > 0\]

Áp dụng bất đẳng thức Cô – si ta có

\[P = {t^2} + \frac{{54}}{t} = {t^2} + \frac{{27}}{t} + \frac{{27}}{t} \ge 3\sqrt[3]{{{{27}^2}}} = 27.\]

Đẳng thức xảy ra khi và chỉ khi\[{t^2} = \frac{{27}}{t} \Leftrightarrow t = 3.\]

Ta có\[m = {\log _a}\sqrt {ab} = \frac{1}{2}{\log _a}\left( {ab} \right) = \frac{1}{2}\left( {1 + {{\log }_a}b} \right) = \frac{1}{2}\left( {1 + t} \right) = \frac{1}{2}\left( {1 + 3} \right) = 2\]Đáp án cần chọn là: A


Câu 26:

Tập nghiệm của bất phương trình \[{\left( {\sqrt 5 - 2} \right)^{\frac{{2x}}{{x - 1}}}} \le {\left( {\sqrt 5 + 2} \right)^x}\] là:

Xem đáp án

\[{\left( {\sqrt 5 - 2} \right)^{\frac{{2x}}{{x - 1}}}} \le {\left( {\sqrt 5 + 2} \right)^x} \Leftrightarrow {\left( {\sqrt 5 + 2} \right)^{\frac{{ - 2x}}{{x - 1}}}} \le {\left( {\sqrt 5 + 2} \right)^x} \Leftrightarrow - \frac{{2x}}{{x - 1}} \le x\]

\[ \Leftrightarrow \frac{{2x}}{{x - 1}} + x \ge 0 \Leftrightarrow \frac{{{x^2} + x}}{{x - 1}} \ge 0 \Leftrightarrow - 1 \le x \le 0 \vee x > 1\]

Đáp án cần chọn là: D


Câu 27:

Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng 9 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Hỏi sau đúng 18 năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu tiền? Kết quả làm tròn đến hai chữ số phần thập phân.

Xem đáp án

Gọi số tiền đóng hàng năm là A=12 (triệu đồng), lãi suất là\[r = 6{\rm{\% }} = 0,06\]

Sau 1 năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là\[{A_1} = A\left( {1 + r} \right)\] (nhưng người đó không rút mà lại đóng thêm A triệu đồng nữa, nên số tiền gốc để tính lãi năm sau là\[{A_1} + A\])

Sau 2 năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là:

\[{A_2} = \left( {{A_1} + A} \right)\left( {1 + r} \right) = \left[ {A\left( {1 + r} \right) + A} \right]\left( {1 + r} \right) = A{\left( {1 + r} \right)^2} + A\left( {1 + r} \right)\]

Sau 3 năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là:

\[\begin{array}{l}{A_3} = \left( {{A_2} + A} \right)\left( {1 + r} \right) = \left[ {A{{\left( {1 + r} \right)}^2} + A\left( {1 + r} \right) + A} \right]\left( {1 + r} \right)\\ = A{\left( {1 + r} \right)^3} + A{\left( {1 + r} \right)^2} + A\left( {1 + r} \right)\end{array}\]

Sau 18 năm, người đó đi rút tiền thì sẽ nhận được số tiền là:

\[{A_{18}} = A{\left( {1 + r} \right)^{18}} + A{\left( {1 + r} \right)^{17}} + ... + A{\left( {1 + r} \right)^2} + A\left( {1 + r} \right)\]

Tính:\[{A_{18}} = A\left[ {{{\left( {1 + r} \right)}^{18}} + {{\left( {1 + r} \right)}^{17}} + ... + {{\left( {1 + r} \right)}^2} + \left( {1 + r} \right) + 1 - 1} \right]\]

\[ \Rightarrow {A_{18}} = A\left[ {\frac{{{{\left( {1 + r} \right)}^{19}} - 1}}{{\left( {1 + r} \right) - 1}} - 1} \right] = A\left[ {\frac{{{{\left( {1 + r} \right)}^{19}} - 1}}{r} - 1} \right] = 12\left[ {\frac{{{{\left( {1 + 0,06} \right)}^{19}} - 1}}{{0,06}} - 1} \right] \approx 393,12\]

Đáp án cần chọn là: D


Bắt đầu thi ngay