ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Hoán vị - chỉnh hợp - tổ hợp - bài toán đếm
-
1308 lượt thi
-
25 câu hỏi
-
45 phút
Danh sách câu hỏi
Câu 1:
Số các hoán vị khác nhau của n phần tử là:
Đáp án cần chọn là: A
Câu 2:
Số các hoán vị của 10 phần tử là:
Số các hoán vị khác nhau của 10 phần tử là \[{P_{10}} = 10!\]
Đáp án cần chọn là: B
Câu 3:
Có bao nhiêu số có 5 chữ số đôi một khác nhau tạo thành từ các chữ số 1,2,3,4,5?
Gọi số thỏa mãn bài toán là: \[\overline {abcde} \]
Mỗi số có 5 chữ số thỏa mãn bài toán là một hoán vị của 5 chữ số trên.
Số các số là \[5! = 120\] (số).
Đáp án cần chọn là: D
Câu 4:
Số chỉnh hợp chập k của n phần tử là:
Số chỉnh hợp chập k của n phần tử là:
\[A_n^k = \frac{{n!}}{{\left( {n - k} \right)!}} = n\left( {n - 1} \right)\left( {n - 2} \right)...\left( {n - k + 1} \right)\]
Đáp án cần chọn là: A
Câu 5:
Số chỉnh hợp chập 5 của 9 phần tử là:
Đáp án cần chọn là: A
Câu 6:
Số các số có 4 chữ số đôi một khác nhau được tạo thành từ các chữ số 2,4,6,7,8,9 là:
Mỗi số thỏa mãn bài toán và một chỉnh hợp chập 4 của 6 phần tử.
Số các số là: \[A_6^4 = 360\] số.
Đáp án cần chọn là: C
Câu 7:
Số tổ hợp chập k của n phần tử là:
Đáp án cần chọn là: C
Câu 8:
Số tổ hợp chập 6 của 7 phần tử là:
Số tổ hợp chập 6 của 7 phần tử là \[C_7^6 = 7\]
Đáp án cần chọn là: B
Câu 9:
Một lớp có 40 học sinh. Số cách chọn ra 5 bạn để làm trực nhật là:
Mỗi cách chọn ra 5 bạn là một tổ hợp chập 5 của 40.
Do đó số cách chọn là \[C_{40}^5\]
Đáp án cần chọn là: A
Câu 10:
Mỗi cách lấy ra k trong số n phần tử được gọi là:
Đáp án cần chọn là: A
Câu 11:
Cho tập \[A = \left\{ {1;2;4;6;7;9} \right\}\] Hỏi có thể lập được từ tập A bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau, trong đó không có mặt chữ số 7.
Lập số tự nhiên có 4 chữ số đôi một khác nhau sao cho không có mặt chữ số 7, ta bỏ chữ số 7 ra khổi tập hợp A, khi đó ta được tập hợp \[B = \left\{ {1;2;4;6;9} \right\}\] và đưa bài toán trở thành có thể lập được từ tập B bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau.
Số các số có 4 chữ số khác nhau lập được từ tập B là chỉnh hợp chập 4 của 5. Vậy có \[A_5^4 = 120\] số.
Đáp án cần chọn là: D
Câu 12:
Có bao nhiêu số tự nhiên có các chữ số đôi một khác nhau nhỏ hơn 1000 được lập từ năm chữ số 0,1,2,3,4?
Số nhỏ hơn 1000 là số có nhiều nhất 3 chữ số.
TH1: Ta đưa về bài toán: Có bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau được lập từ năm chữ số 0,1,2,3,4?
Gọi số cần tìm có dạng \[\overline {abc} \,\,\left( {a \ne 0,a \ne b \ne c} \right)\]suy ra có 4 cách chọn a, có 4 cách chọn b, có 3 cách chọn cc .
Vậy có 4.4.3=48 số.
TH2: Số có hai chữ số khác nhau lập từ các số 0,1,2,3,4?
Có 4.4=16 số.
TH3: Số có 1 chữ số lập từ các số 0,1,2,3,4?
Có 5 số.
Vậy có có tất cả 69 số.
Đáp án cần chọn là: C
Câu 13:
Một nhóm 4 đường thẳng song song cắt một nhóm 5 đường thẳng song song khác. Hỏi có bao nhiêu hình bình hành được tạo thành?
Bước 1: Xác định yếu tố cấu thành hình bình hành.
Cứ hai đường thẳng song song trong nhóm này và 2 đường thẳng song song trong nhóm kia cắt nhau tạo thành một hình bình hành.
Bước 2: Tìm số hình bình hành.
Chọn 2 đường thẳng song song trong nhóm 4 đường thẳng song song có \[C_4^2 = 6\] cách.
Chọn 2 đường thẳng song song trong nhóm 5 đường thẳng song song có \[C_5^2 = 10\] cách.
Vậy có tất cả \[6.10 = 60\]hình bình hành được tạo thành.
Đáp án cần chọn là: B
Câu 14:
Từ 5 bông hoa hồng vàng, 3 bông hoa hồng trắng và 4 bông hoa hồng đỏ (các bông hoa xem như đôi một khác nhau), người ta muốn chọn một bó hồng gồm 7 bông, hỏi có bao nhiêu cách chọn bó hoa trong đó có ít nhất 3 bông hoa hồng vàng và ít nhất 3 bông hoa hồng đỏ?
TH1: Chọn được 3 bông hoa hồng vàng và 4 bông hoa hồng đỏ.
Số cách chọn 3 bông hồng vàng là \[C_5^3 = 10\] cách.
Số cách chọn 4 bông hồng đỏ là \[C_4^4 = 1\] cách.
Theo quy tắc nhân thì có \[10.1 = 10\]cách.
TH2: Chọn được 4 bông hoa hồng vàng và 3 bông hoa hồng đỏ.
Tương tự TH1 ta có số cách chọn là \[C_5^4.C_4^3 = 20\] cách.
TH3: Chọn được 3 bông hoa hồng vàng, 3 bông hoa hồng đỏ và 1 bông hoa hồng trắng.
Tương tự TH1 ta có số cách chọn là \[C_5^3.C_4^3.C_3^1 = 120\] cách.
Vậy theo quy tắc cộng ta có \[10 + 20 + 120 = 150\]cách.
Đáp án cần chọn là: D
Câu 15:
Một lớp có 8 học sinh được bầu chọn vào 3 chức vụ khác nhau: lớp trưởng, lớp phó và bí thư (không được kiêm nhiệm). Số cách lựa chọn khác nhau sẽ là:
Số cách chọn ra 3 người để bầu cho 3 vị trí khác nhau là \[A_8^3 = 336\] (cách).
Đáp án cần chọn là: A
Câu 16:
Cho tập \[A = \left\{ {2;5} \right\}\] Hỏi có thể lập được bao nhiêu số có 10 chữ số, các chữ số lấy từ tập A sao cho không có chữ số 2 nào đứng cạnh nhau?
TH1: Có 10 chữ số 5: Chỉ có duy nhất 1 số.
TH2: Có 9 chữ số 5 và 1 chữ số 2 .
Xếp 9 chữ số 5 thành 1 hàng ngang có 1 cách. Khi đó ta sẽ tạo nên 10 vách ngăn. Việc còn lại là xếp 1 chữ số 2 vào 10 vách ngăn đó, có 10 cách. Vậy trường hợp này có 10 số.
TH3: Có 8 chữ số 5 và 2 chữ số2.
Xếp 8 chữ số 5 thành 1 hàng ngang có 1 cách. Khi đó ta sẽ tạo nên 9 vách ngăn. Việc còn lại là xếp 2 chữ số 2 vào 9 vách ngăn đó, có \[C_9^2 = 36\] cách. Vậy trường hợp này có 36 số.
TH4: Có 7 chữ số 5 và 3 chữ số 2 .
Xếp 7 chữ số 5 thành 1 hàng ngang có 1 cách. Khi đó ta sẽ tạo nên 8 vách ngăn. Việc còn lại là xếp 3 chữ số 2 vào 8 vách ngăn đó, có \[C_8^3 = 56\] cách. Vậy trường hợp này có 56 số.
TH5: Có 6 chữ số 5 và 4 chữ số 2 .
Xếp 6 chữ số 5 thành 1 hàng ngang có 1 cách. Khi đó ta sẽ tạo nên 7 vách ngăn. Việc còn lại là xếp 4 chữ số 2 vào 7 vách ngăn đó, có \[C_7^4 = 35\] cách. Vậy trường hợp này có 35 số.
TH6: Có 5 chữ số 5 và 5 chữ số 2.
Xếp 5 chữ số 5 thành 1 hàng ngang có 1 cách. Khi đó ta sẽ tạo nên 6 vách ngăn. Việc còn lại là xếp 5 chữ số 2 vào 6 vách ngăn đó, có \[C_6^5 = 6\] cách. Vậy trường hợp này có 6 số.
Theo quy tắc cộng ta có tất cả: \[1 + 10 + 36 + 56 + 35 + 6 = 144\] số.
Đáp án cần chọn là: A
Câu 17:
Trong một tổ học sinh có 5 em gái và 10 em trai. Thùy là 1 trong 5 em gái và Thiện là 1 trong 10 em trai. Thầy chủ nhiệm chọn ra 1 nhóm 5 bạn tham gia buổi văn nghệ tới. Hỏi thầy chủ nhiệm có bao nhiêu cách chọn mà trong đó có ít nhất một trong hai em Thùy và Thiện không được chọn?
Bài toán đối: tìm số cách chọn ra 5 bạn mà trong đó có cả bạn Thùy và Thiện.
Bước 1: Chọn nhóm 3 em trong 13 em (13 em này không tính em Thùy và Thiện) có \[C_{13}^3 = 286\] cách.
Bước 2: Chọn 2 em Thùy và Thiện có 1 cách.
Vậy theo quy tắc nhân thì ta có 286 cách chọn 5 em mà trong đó có cả 2 em Thùy và Thiện.
Chọn 5 em bất kì trong số 15 em thì ta có: \[C_{15}^5 = 3003\] cách.
Vậy theo yêu cầu đề bài thì có tất cả \[3003 - 286 = 2717\]cách chọn mà trong đó có ít nhất một trong hai em Thùy Và Thiện không được chọn.
Đáp án cần chọn là: C
Câu 18:
Số tam giác xác định bởi các đỉnh của một đa giác đều 10 cạnh là:
Cứ ba đỉnh của đa giác sẽ tạo thành một tam giác.
Chọn 3 trong 10 đỉnh của đa giác, có \[C_{10}^3 = 120\].
Vậy có 120 tam giác xác định bởi các đỉnh của đa giác 10 cạnh.
Đáp án cần chọn là: B
Câu 19:
Một nhóm đoàn viên thanh niên tình nguyện về sinh hoạt tại một xã nông thôn gồm có 21 đoàn viên nam và 15 đoàn viên nữ. Hỏi có bao nhiêu cách phân chia 3 nhóm về 3 ấp để hoạt động sao cho mỗi ấp có 7 đoàn viên nam và 5 đoàn viên nữ?
Bước 1: Chọn 7 nam trong 21 nam và 5 nữ trong 15 nữ cho ấp thứ nhất.
Số cách chọn là \[C_{21}^7.C_{15}^5\] cách.
Bước 2: Chọn 7 nam trong 14 nam và 5 nữ trong 10 nữ cho ấp thứ hai
Số cách chọn là \[C_{14}^7.C_{10}^5\] cách.
Bước 3: Chọn 7 nam trong 7 nam và 5 nữ trong 5 nữ cho ấp thứ ba.
Số cách chọn là \[C_7^7.C_5^5 = 1\] cách.
Áp dụng quy tắc nhân ta có: \[C_{21}^7.C_{15}^5.C_{14}^7.C_{10}^5\] cách.
Đáp án cần chọn là: D
Câu 20:
Một lớp học có nn học sinh (n>3). Thầy chủ nhiệm cần chọn ra một nhóm và cần cử ra 1 học sinh trong nhóm đó làm nhóm trưởng. Số học sinh trong mỗi nhóm phải lớn hơn 1 và nhỏ hơn n. Gọi T là số cách chọn. Lúc này:
Gọi \[{A_k}\] là phương án: Chọn nhóm có k học sinh và chỉ định 1 bạn trong k học sinh đó làm nhóm trưởng.
Thầy chủ nhiệm có các phương án: \[{A_2},{A_3},{A_4},...,{A_{n - 1}}\]
Ta tính xem \[{A_k}\] có bao nhiêu cách thực hiện.
Phương án \[{A_k}\] có hai công đoạn:
Công đoạn 1: Chọn k học sinh trong n học sinh có \[C_n^k\] cách chọn.
Công đoạn 2: Chọn 1 học sinh trong k học sinh làm nhóm trưởng có \[C_k^1 = k\] cách.
Theo quy tắc nhân thì phương án \[{A_k}\] có \[kC_n^k\] cách thực hiện.
Các phương án \[{A_k}\] là độc lập với nhau.
Vậy theo quy tắc cộng ta có: \[T = \mathop \sum \limits_{k = 2}^{n - 1} kC_n^k\]
Đáp án cần chọn là: A
Câu 21:
Cho \[k,\,\,n\left( {k < n} \right)\] là các số nguyên dương. Mệnh đề nào sau đây SAI?
Ta có:
\[C_n^k = C_n^{n - k},\,\,C_n^k = \frac{{n!}}{{k!\left( {n - k} \right)!}};\,\,A_n^k = k!C_n^k\] là các công thức đúng.
Đáp án cần chọn là: D
Câu 22:
Có bao nhiêu cách xếp 5 học sinh thành một hàng dọc?
Mỗi cách xếp cho ta một hoán vị của 5 học sinh và ngược lại.
Vậy số cách xếp là \[{P_5} = 5! = 120\] (cách).
Đáp án cần chọn là: D
Câu 23:
Cho các chữ số 0, 1, 2, 4, 5, 7, 8, 9; có thể lập được bao nhiêu số tự nhiên chia hết cho 15, gồm 4 chữ số đôi một khác nhau?
Gọi số tự nhiên có 4 chữ số khác nhau là \[\overline {abcd} \,\,\left( {a \ne 0} \right)\]
Để một số chia hết cho 15 thì số đó phải chia hết cho 3 và cho 5.
⇒\[ \Rightarrow d \in \left\{ {0;5} \right\}\]
TH1: d=0, số cần tìm có dạng \[\overline {abc0} \]
Để số cần tìm chia hết cho 3 thì \[a + b + c\,\, \vdots \,\,3\]
Ta có các nhóm: \(\left\{ {\begin{array}{*{20}{c}}{9 \equiv 0(mod\,3)}\\{\{ 1;4;7\} \equiv 1(mod\,3)}\\{\{ 2;5;8\} \equiv 2(mod\,3)}\end{array}} \right.\)
+) \[a,\,\,b,\,\,c \equiv 1\,\,\left( {\bmod 3} \right) \Rightarrow a,\,\,b,\,\,c \in \left\{ {1;4;7} \right\}\]
⇒ Có 3! cách chọn.
+) \[a,\,\,b,\,\,c \equiv 2\,\,\left( {\bmod 3} \right) \Rightarrow a,\,\,b,\,\,c \in \left\{ {2;5;8} \right\}\]
⇒ Có 3! cách chọn.
+) Trong 3 số a,b,c có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.
⇒ Có \[1.C_3^1.C_3^1.3!\]cách chọn.
⇒ Có \[3! + 3! + 1.C_3^1.C_3^1.3! = 66\]số.
TH2: d=5, số cần tìm có dạng \[\overline {abc5} \]
Để số cần tìm chia hết cho 3 thì \[a + b + c + 5\,\, \vdots \,\,3\], trong đó \[5 \equiv 2\,\,\left( {\bmod 3} \right)\].
Ta có các nhóm: \(\left\{ {\begin{array}{*{20}{c}}{\{ 0;9\} \equiv 0(mod\,\,3)}\\{\{ 1;4;7\} \equiv 1(mod\,\,3)}\\{\{ 2;8\} \equiv 2(mod\,\,3)}\end{array}} \right.\)
+) Trong 3 số a,b,c có 2 số chia hết cho 3, 1 số chia 3 dư 1.
- Ta chọn số chia hết cho 3 trước: Có 1 cách chọn. Chọn tiếp số chia cho 3 dư 1, có \[C_3^1\] cách chọn. Sắp xếp các số này có 3! cách. Theo quy tắc nhân có: \[C_3^1.3!\] cách chọn.
Trong các cách chọn này có số có chữ số 0 ở đầu nên ta phải trừ đi các cách chọn a,b,c có a=0, ta cần tìm \[\overline {bc} \]
Chọn số chia hết cho 3 có 1 cách, chọn số chia 3 dư 1 có \[C_3^1\] cách. Sắp xếp hai số này có 2! cách. Số cách chọn \[\overline {bc} \]là \[C_3^1.2!\]
⇒ Có \[C_3^1.3! - C_3^1.2! = 12\] cách chọn.
+) Trong 3 số a,b,c có 1 số chia hết cho 3, 2 số chia 3 dư 3.
⇒ Có \[C_2^1.3! - 2! = 10\] cách chọn.
+) Trong 3 số a,b,c có 1 số chia 3 dư 1, 1 số chia 3 dư 2.
⇒ Có \[C_3^2.C_2^1.3! = 36\] cách chọn.
Vậy có tất cả \[66 + 12 + 10 + 36 = 124\]số thỏa mãn.
Đáp án cần chọn là: A
Câu 24:
Có bao nhiêu số tự nhiên có 4 chữ số mà tổng tất cả các chữ số của số đó bằng 7.
Gọi số cần tìm có dạng\[\overline {abcd} \left( {a,\,\,b,\,\,c,\,\,d \in \mathbb{N},\,\,0 \le a,\,\,b,\,\,c,\,\,d \le 9,\,\,a \ne 0} \right)\]
TH1: Trong 4 chữ số a, b, c, d có 3 chữ số bằng 0 \[ \Rightarrow b = c = d = 0,\,\,a = 7\]
Do đó có 1 số thỏa mãn.
TH2: Trong 4 chữ số a, b, c, d có 2 chữ số bằng 0.
- Chọn vị trí cho 2 chữ số 0 có\[C_3^2 = 3\] cách.
- Tổng hai chữ số còn lại là 7, ta có
\[7 = 6 + 1 = 5 + 2 = 4 + 3 = 3 + 4 = 2 + 5 = 1 + 6\] nên có 6 cách chọn 2 chữ số còn lại.
Do đó trường hợp này có 18 số.
TH3: Trong 4 chữ số a, b, c, d có 1 chữ số bằng 0.
- Chọn vị trí cho 1 chữ số 0 có\[C_3^1 = 3\] cách.
- Tổng 3 chữ số còn lại bằng 7, ta có:
\[7 = 1 + 1 + 5 = 1 + 2 + 4 = 1 + 3 + 3 = 2 + 2 + 3\]
+ Với bộ số (1;2;4) có\[3! = 6\] cách chọn 3 chữ số còn lại.
+ Với 3 bộ số còn lại có\[\frac{{3!}}{{2!}} = 3\] cách chọn 3 chữ số còn lại.
Do đó trường hợp này có\[3.\left( {6 + 3.3} \right) = 45\] số.
TH4: Trong 4 chữ số a, b, c, d không có chữ số nằm bằng 0.
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{7 = 1 + 1 + 1 + 4}\\{7 = 1 + 1 + 2 + 3}\\{7 = 1 + 2 + 2 + 2}\end{array}} \right.\)
+ Với bộ số (1;1;1;4), có\[\frac{{4!}}{{3!}} = 4\] cách chọn 4 chữ số a, b, c, d.
+ Với bộ số (1;1;2;3), có\[\frac{{4!}}{{2!}} = 12\] cách chọn 4 chữ số a, b, c, d.
+ Với bộ số (1;2;2;2), có\[\frac{{4!}}{{3!}} = 4\] cách chọn 4 chữ số a, b, c, d.
Do đó trường hợp này có 4 + 12 + 4 = 20 số thỏa mãn.
Vậy có tất cả: 1 + 18 + 45 + 20 = 84 số.
Đáp án cần chọn là: D
Câu 25:
Cho 10 điểm trong không gian, trong đó không có 3 điểm nào thẳng hàng. Nếu trong 10 điểm trên không có 4 điểm nào đồng phẳng thì có bao nhiêu tứ diện được tạo thành?
Bước 1: Xác định yếu tố cấu thành tứ diện
Một tứ diện được tạo thành là một cách chọn 4 điểm phân biệt không đồng phẳng trong 10 điểm.
Bước 2: Sử dụng công thức tổ hợp.
Số cách chọn 4 điểm trong 10 điểm: \[C_{10}^4 = 210\] cách.
Vậy số tứ diện là 210 tứ diện.
Đáp án cần chọn là: A