Thứ năm, 21/11/2024
IMG-LOGO
Trang chủ Đánh giá năng lực ĐHQG Hà Nội Sử dụng phương pháp tích phân từng phần để tính tích phân

Sử dụng phương pháp tích phân từng phần để tính tích phân

Sử dụng phương pháp tích phân từng phần để tính tích phân

  • 1070 lượt thi

  • 27 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

Cho tích phân \[I = \mathop \smallint \limits_a^b f\left( x \right).g'\left( x \right){\rm{d}}x,\], nếu đặt \(\left\{ {\begin{array}{*{20}{c}}{u = f(x)}\\{dv = g\prime (x)dx}\end{array}} \right.\) thì 

Xem đáp án

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = f(x)}\\{dv = g\prime (x)dx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = f\prime (x)dx}\\{v = g(x)}\end{array}} \right.\) khi đó

\[I = f\left( x \right).g\left( x \right)\left| {_a^b} \right. - \int\limits_a^b {f'\left( x \right)} .g\left( x \right)dx\]

Đáp án cần chọn là: C


Câu 2:

Để tính \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {x^2}\,\cos x\,{\rm{d}}x\] theo phương pháp tích phân từng phần, ta đặt

Xem đáp án

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = {x^2}}\\{dv = cosxdx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = 2xdx}\\{v = sinx}\end{array}} \right.\)khi đó\[I = {x^2}sinx\left| {_0^{\frac{\pi }{2}}} \right. - 2\int\limits_0^{\frac{\pi }{2}} {xsinxdx} \]

Đáp án cần chọn là: B


Câu 3:

Cho f(x),g(x) là hai hàm số có đạo hàm liên tục trên đoạn \[\left[ {0;1} \right]\;\]và thỏa mãn điều kiện \[\int\limits_0^1 {g\left( x \right)} .f'\left( x \right)dx = 1,\int\limits_0^1 {g'\left( x \right)} .f\left( x \right)dx = 2\]. Tính tích phân \(I = \int\limits_0^1 {\left[ {f\left( x \right).g\left( x \right)} \right]} 'dx\)A.I=2

Xem đáp án

Đặt \(\left\{ {\begin{array}{*{20}{c}}{u = g(x)}\\{dv = f\prime (x)dx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = g\prime (x)dx}\\{v = f(x)}\end{array}} \right.\)

Khi đó

\[\int\limits_0^1 {g\left( x \right)} .f'\left( x \right)dx = \left[ {g(x).f(x)} \right]\left| {_0^1} \right. - \int\limits_0^1 {g'\left( x \right)} .f\left( x \right)dx\]

\( \Leftrightarrow \left[ {g(x).f(x)} \right]\left| {_0^1} \right. = 3\)

Mặt khác\(I = \int\limits_0^1 {\left[ {f\left( x \right).g\left( x \right)} \right]} 'dx = \left[ {f\left( x \right).g\left( x \right)} \right]\left| {_0^1} \right. \Rightarrow I = 3\)

Đáp án cần chọn là: C


Câu 4:

Cho \[F\left( x \right) = {x^2}\] là nguyên hàm của hàm số \[f(x){e^{2x}}\;\] và f(x) là hàm số thỏa mãn điều kiện \[f\left( 0 \right) = 0,f\left( 1 \right) = \frac{2}{{{e^2}}}.\]. Tính tích phân \(I = \int\limits_0^1 {f'\left( x \right)} {e^{2x}}dx\)

Xem đáp án

Vì \[{x^2}\] là một nguyên hàm của hàm số\[f\left( x \right){e^{2x}} \Rightarrow \smallint f\left( x \right){e^{2x}}\,{\rm{d}}x = {x^2}.\]

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = {e^{2x}}}\\{dv = f\prime (x)dx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = 2{e^{2x}}dx}\\{v = f(x)}\end{array}} \right.\) khi đó

\(\int\limits_0^1 {f'\left( x \right)} {e^{2x}}dx = f(x){e^{2x}}\left| {_0^1} \right. - 2\int\limits_0^1 {f(x){e^{2x}}dx} \)

Suy ra\[I = {e^2}f(1) - f(0) - 2{x^2}\left| {_0^1} \right. = 2 - 0 - 2 = 0\]

Vậy\[I = 0\]

Đáp án cần chọn là: A


Câu 5:

Cho tích phân \[I = \mathop \smallint \limits_1^2 \frac{{x + \ln x}}{{{{\left( {x + 1} \right)}^3}}}{\rm{d}}x = a + b.\ln 2 - c.\ln 3\]với\[a,b,c \in R\], tỉ số \(\frac{c}{a}\) bằng

Xem đáp án

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x + lnx}\\{dv = \frac{{dx}}{{{{(x + 1)}^3}}}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = \frac{{x + 1}}{x}dx}\\{v = - \frac{1}{{2{{(x + 1)}^2}}}}\end{array}} \right.\)

Khi đó\[I = - \frac{{x + lnx}}{{2{{(x + 1)}^2}}}\left| {_1^2} \right. + \int\limits_1^2 {\frac{{x + 1}}{x}.\frac{1}{{2{{(x + 1)}^2}}}} dx\]

\[ = - \frac{{2 + \ln 2}}{{18}} + \frac{1}{8} + \frac{1}{2}\mathop \smallint \limits_1^2 \frac{{{\rm{d}}x}}{{x\left( {x + 1} \right)}}\]

\[ = - \frac{{2 + \ln 2}}{{18}} + \frac{1}{8} + \frac{1}{2}\mathop \smallint \limits_1^2 \left( {\frac{1}{x} - \frac{1}{{x + 1}}} \right){\rm{d}}x.\]

\( = - \frac{{2 + ln2}}{{18}} + \frac{1}{8} + \frac{1}{2}(ln|x| - ln|x + 1|)\left| {_1^2} \right.\)

\(\begin{array}{l} = \frac{1}{{72}} - \frac{1}{{18}}ln2 + \frac{1}{2}(ln2 - ln3 + ln2)\\ = \frac{1}{{72}} + \frac{{17}}{{18}}ln2 - \frac{1}{2}\ln 3\\ = a + b.ln2 - c.ln3\end{array}\)

Vậy\(\left\{ {\begin{array}{*{20}{c}}{a = \frac{1}{{72}}}\\{b = \frac{{17}}{{18}}}\\{c = \frac{1}{2}}\end{array}} \right. \Rightarrow \frac{c}{a} = \frac{1}{2}:\frac{1}{{72}} = 36\)

Đáp án cần chọn là: D


Câu 6:

Cho tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{4}} \frac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}{\rm{d}}x = \frac{{m - \pi }}{{m + \pi }}\], giá trị của m bằng :

Xem đáp án

Ta có :\[{\left( {x\sin x + \cos x} \right)^\prime } = \sin x + x\cos x - \sin x = x\cos x\]

\[ \Rightarrow I = \mathop \smallint \limits_0^{\frac{\pi }{4}} \frac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}{\rm{d}}x = \mathop \smallint \limits_0^{\frac{\pi }{4}} \frac{{\frac{x}{{\cos x}}.x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}dv\]

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = \frac{x}{{cosx}}}\\{dv = \frac{{xcosx}}{{{{(xsinx + cosx)}^2}}}dx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = \frac{{xsinx + cosx}}{{co{s^2}x}}dx}\\{v = \frac{1}{{xsinx + cosx}}}\end{array}} \right.\)

Khi đó

\(I = - \frac{x}{{cosx}}.\frac{1}{{xsinx + cosx}}\left| {_0^{\frac{\pi }{4}}} \right. + \int\limits_0^{\frac{\pi }{4}} {\frac{{dx}}{{co{s^2}x}}} \)

\( = \frac{{ - \frac{\pi }{4}}}{{\frac{{\sqrt 2 }}{2}}}.\frac{1}{{\frac{\pi }{4}\frac{{\sqrt 2 }}{2} + \frac{{\sqrt 2 }}{2}}} + tanx\left| {_0^{\frac{\pi }{4}}} \right.\)

\( = \frac{{ - \frac{\pi }{4}}}{{\frac{1}{2}\left( {\frac{\pi }{4} + 1} \right)}} + 1 = \frac{{ - 2\pi }}{{\left( {\pi + 4} \right)}} + 1 = \frac{{4 - \pi }}{{4 + \pi }} \Rightarrow m = 4\)

Đáp án cần chọn là: C


Câu 7:

Cho tích phân \[I = \mathop \smallint \limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} \frac{{\ln \left( {3\sin x + \cos x} \right)}}{{{{\sin }^2}x}}{\rm{d}}x = m.\ln \sqrt 2 + n.\ln 3 - \frac{\pi }{4}\], tổng m+n

Xem đáp án

Đặt

\(\left\{ {\begin{array}{*{20}{c}}{u = ln(3sinx + cosx)}\\{dv = \frac{{dx}}{{si{n^2}x}}}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = \frac{{3cosx - sinx}}{{3sinx + cosx}}dx}\\{v = - cotx - 3 = - \frac{{3sinx + cosx}}{{sinx}}}\end{array}} \right.\)

Khi đó

\[I = [ - (cotx + 3)ln(3sinx + cosx)]\left| {_{\frac{\pi }{4}}^{\frac{\pi }{2}}} \right. + \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\frac{{3cosx - sinx}}{{sinx}}} dx\]

\[ = 4.ln2\sqrt 2 - 3.ln3 - \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {dx + 3\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\frac{{d(sinx)}}{{sinx}}} .} \]

\[ = 4.ln2\sqrt 2 - 3.ln3 - \int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {dx + 3ln|sinx|\left| {_{\frac{\pi }{4}}^{\frac{\pi }{2}}} \right.} \]

\[\begin{array}{l} = 4.ln2\sqrt 2 - 3.ln3 - \frac{\pi }{4} - 3.ln\frac{1}{{\sqrt 2 }}\\ = 12ln\sqrt 2 - 3ln3 - \frac{\pi }{4} + 3ln\sqrt 2 = 15.ln\sqrt 2 - 3.ln3 - \frac{\pi }{4}\end{array}\]

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{m = 15}\\{n = - 3}\end{array}} \right. \Rightarrow m + n = 12\)

Đáp án cần chọn là: A


Câu 8:

Tích phân:  \[I = \mathop \smallint \limits_1^e 2x(1 - \ln x)\,dx\] bằng

Xem đáp án

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = 1 - lnx}\\{dv = 2xdx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = - \frac{{dx}}{x}}\\{v = {x^2}}\end{array}} \right.\)

\[I = {x^2}(1 - lnx)\left| {_1^e} \right. - \int\limits_1^e { - xdx = - 1 + \frac{{{x^2}}}{2}\left| {_1^e} \right. = - 1 + \left( {\frac{{{e^2}}}{2} - \frac{1}{2}} \right)} = \frac{{{e^2} - 3}}{2}\]

Đáp án cần chọn là: D


Câu 9:

Tính tích phân \[I = \mathop \smallint \limits_1^e x\ln x{\rm{d}}x\]

Xem đáp án

Dùng máy tính kiểm tra từng đáp án hoặc:

Đặt\[u = \ln x,dv = xdx \Rightarrow du = \frac{{dx}}{x},v = \frac{{{x^2}}}{2}\]

\(I = \frac{{{x^2}lnx}}{2}\left| {_1^e} \right. - \int\limits_1^e {\frac{x}{2}} dx = \frac{{{e^2}}}{2} - \frac{{{x^2}}}{4}\left| {_1^e} \right. = \frac{{{e^2}}}{2} - \left( {\frac{{{e^2}}}{2} - \frac{1}{4}} \right) = \frac{{{e^2} + 1}}{4}\)

Đáp án cần chọn là: C


Câu 10:

Tính tích phân \[I = \mathop \smallint \limits_1^{{2^{1000}}} \frac{{\ln x}}{{{{(x + 1)}^2}}}dx\]

Xem đáp án

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = \ln x}\\{dv = \frac{{dx}}{{{{(x + 1)}^2}}}}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = \frac{{dx}}{x}}\\{v = - \frac{1}{{x + 1}}}\end{array}} \right.\)

\(\begin{array}{l} \Rightarrow I = - \frac{{lnx}}{{x + 1}}\left| {_1^{{2^{1000}}}} \right. + \int\limits_1^{{2^{1000}}} {\frac{1}{{x + 1}}} .\frac{{dx}}{x}\\ = - \frac{{\ln {2^{1000}}}}{{{2^{1000}} + 1}} + \int\limits_1^{{2^{1000}}} {\left( {\frac{1}{x} - \frac{1}{{x + 1}}} \right)} dx\\ = - \frac{{1000ln2}}{{{2^{1000}} + 1}} + \ln \left| {\frac{x}{{x + 1}}} \right|\left| {_1^{{2^{1000}}}} \right.\\ = - \frac{{1000ln2}}{{{2^{1000}} + 1}} + \ln \frac{{{2^{1000}}}}{{{2^{1000}} + 1}} - \ln \frac{1}{2}\\ = - \frac{{1000ln2}}{{{2^{1000}} + 1}} + \ln \frac{{{2^{1001}}}}{{{2^{1000}} + 1}}\end{array}\)

Đáp án cần chọn là: A


Câu 11:

Biết rằng\[\smallint {e^{2x}}\cos 3xdx = {e^{2x}}\left( {a\cos 3x + b\sin 3x} \right) + c\], trong đó a,b,c là các hằng số, khi đó tổng a+b có giá trị là:

Xem đáp án

Đặt\[f\left( x \right) = {e^{2x}}\left( {a\cos 3x + b\sin 3x} \right) + c\]

Ta có

\[f'\left( x \right) = 2a{e^{2x}}\cos 3x - 3a{e^{2x}}\sin 3x + 2b{e^{2x}}\sin 3x + 3b{e^{2x}}\cos 3x\]

\[ = \left( {2a + 3b} \right){e^{2x}}\cos 3x + \left( {2b - 3a} \right){e^{2x}}\sin 3x\]

Để f(x) là một nguyên hàm của hàm số \[{e^{2x}}\cos x\], điều kiện là\[f\prime (x) = {e^{2x}}cos3x \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2a + 3b = 1}\\{2b - 3a = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = \frac{2}{{13}}}\\{b = \frac{3}{{13}}}\end{array} \Rightarrow a + b = \frac{5}{{13}}} \right.\]

Đáp án cần chọn là: C


Câu 12:

Cho hàm số y=f(x)  thỏa mãn \(\int\limits_0^1 {\left( {x + 1} \right)} .f'\left( x \right)dx = 10\)và \(2f\left( 1 \right) - f\left( 0 \right) = 2\)Tính \(I = \int\limits_0^1 {f\left( x \right)} dx\)

Xem đáp án

Đặt \[u = x + 1;dv = f'(x)dx\]  thì \[du = dx;v = f(x)\]

Ta có:

\[\int\limits_0^1 {(x + 1)f\prime (x)dx = 10 \Leftrightarrow (x + 1)f(x)\left| {_0^1} \right.} - \int\limits_0^1 {f(x)dx = 10 = 2f(1) - f(0) - } \int\limits_0^1 {f(x)dx} \]

\( \Rightarrow \int\limits_0^1 {f(x)dx = - 8.} \)

Đáp án cần chọn là: D


Câu 13:

Cho hàm số y=f(x)thỏa mãn hệ thức \[ \Rightarrow \smallint f(x)\sin {\rm{x}}dx = - f(x).\cos x + \smallint {\pi ^x}.\cos xdx\]. Hỏi y=f(x) là hàm số nào trong các hàm số sau: 

Xem đáp án

Đặt : \(\left\{ {\begin{array}{*{20}{c}}{u = f(x)}\\{dv = sinxdx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = f\prime (x)dx}\\{v = - cosx}\end{array}} \right.\)

\[ \Rightarrow \smallint f(x)\sin {\rm{x}}dx = - f(x).\cos x + \smallint f'(x).\cos xdx\]

Nên suy ra\[f'(x) = {\pi ^x} \Rightarrow f(x) = \smallint {\pi ^x}dx = \frac{{{\pi ^x}}}{{\ln \pi }}\]

Đáp án cần chọn là: B


Câu 14:

Biết rằng \[\mathop \smallint \limits_0^1 x\cos 2xdx = \frac{1}{4}\left( {a\sin 2 + b\cos 2 + c} \right)\] với \[a,b,c \in Z\]. Mệnh đề nào sau đây là đúng

Xem đáp án

\[\begin{array}{l}u(x) = x \Rightarrow u\prime (x) = 1\\v\prime (x) = cos2x \Rightarrow v(x) = \frac{{sin2x}}{2}\end{array}\]

\( \Rightarrow \int\limits_0^1 {xcos2xdx = \frac{x}{2}} sin2x\left| {_0^1} \right. - \frac{1}{2}\int\limits_0^1 {sin2xdx = \frac{x}{2}sin2x} \left| {_0^1} \right. + \frac{{cos2x}}{4}\left| {_0^1} \right.\)

\( = \frac{1}{2}sin2 + \frac{1}{4}cos2 - \frac{1}{4} = \frac{1}{4}(2sin2 + cos2 - 1)\)

\[ \Rightarrow a = 2;b = 1;c = - 1\]

Khi đó\[a - b + c = 2 - 1 - 1 = 0\]

Đáp án cần chọn là: B


Câu 15:

Giả sử tích phân \[I = \mathop \smallint \limits_0^4 x\ln {\left( {2x + 1} \right)^{2017}}dx = a + \frac{b}{c}\ln 3.\].  Với phân số  \(\frac{b}{c}\) tối giản. Lúc đó :

Xem đáp án

Đặt

\(\left\{ {\begin{array}{*{20}{c}}{u = ln{{(2x + 1)}^{2017}}}\\{dv = xdx}\end{array}} \right.\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = \frac{{2017.2.{{(2x + 1)}^{2016}}}}{{{{(2x + 1)}^{2017}}}}dx = \frac{{4034}}{{2x + 1}}dx}\\{v = \frac{{{x^2}}}{2}}\end{array}} \right.\)

\(I = ln{(2x + 1)^{2017}}.\frac{{{x^2}}}{2}\left| {_0^4} \right. - \int\limits_0^4 {\frac{{{x^2}}}{2}.\frac{{4034}}{{2x + 1}}dx} \)

\[ = \ln {(2.4 + 1)^{2017}}.\frac{{{4^2}}}{2} - 0 - 2017\mathop \smallint \nolimits_0^4 \frac{{{x^2}}}{{2x + 1}}dx\]

\[ = 8\ln {9^{2017}} - 2017\mathop \smallint \nolimits_0^4 (\frac{1}{2}x - \frac{1}{4} + \frac{{\frac{1}{4}}}{{2{\rm{x}} + 1}})dx\]

\[ = 8ln{9^{2017}} - \frac{{2017}}{2}.\frac{{{x^2}}}{2}\left| {_0^4} \right. + \frac{{2017}}{4}x\left| {_0^4} \right. - \frac{{2017}}{4}\int\limits_0^4 {\frac{1}{2}.\frac{1}{{2x + 1}}d(2x + 1)} \]

\[ = 8ln{9^{2017}} - \frac{{2017}}{4}{.4^2} + \frac{{2017}}{4}4 - \frac{{2017}}{8}ln|2x + 1|\left| {_0^4} \right.\]

\[ = 8ln{9^{2017}} - 6051 - \frac{{2017}}{8}.(ln9 - ln1)\]

\[ = 8ln{9^{2017}} - 6051 - \frac{{2017}}{8}.ln9 = \frac{{127071}}{4}.ln3 - 6051\]

\[ \Rightarrow b + c = 127075\]

Đáp án cần chọn là: A


Câu 16:

Có bao nhiêu số nguyên dương n sao cho \[n\ln n - \int\limits_1^n {\ln xdx} \] có giá trị không vượt quá 2017

Xem đáp án

\[I = \mathop \smallint \nolimits_1^n \ln xdx\]

Đặt \[\ln x = u;dv = dx\] Suy ra\[\frac{1}{x}dx = du;v = x\]

\[I = (xlnx)\left| {_1^n} \right. - \int\limits_1^n {\frac{x}{x}} dx = nlnn - n + 1\]

Biểu thức ban đầu sẽ là: n−1

Để\[n - 1 \le 2017\] thì\[n \le 2018\] và n nguyên dương

Nên sẽ có 2018  giá trị của n

Đáp án cần chọn là: B


Câu 17:

Biết \[\mathop \smallint \limits_0^{\frac{\pi }{4}} x.c{\rm{os}}2xdx = a + b\pi \], với a,b là các số hữu tỉ. Tính S=a+2b.     

Xem đáp án

Đặt :\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = cos2xdx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = \frac{1}{2}.sin2x}\end{array}} \right.\)

Suy ra: \(\int\limits_0^{\frac{\pi }{4}} {x.cosxdx = (x.\frac{1}{2}.sin2x)} \left| {_0^{\frac{\pi }{4}}} \right. - \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {sin2xdx} \)

\( = \frac{\pi }{8} + \frac{1}{4}cos2x\left| {_0^{\frac{\pi }{4}}} \right. = - \frac{1}{4} + \frac{\pi }{8}\)

\[ \Rightarrow a = - \frac{1}{4};b = \frac{1}{8} \Rightarrow S = a + 2b = 0\]

Đáp án cần chọn là: A


Câu 18:

Biết tích phân \[I = \mathop \smallint \limits_0^1 x{e^{2x}}dx = a{e^2} + b\] (a,b là các số hữu tỉ). Khi đó tổng a+b là:

Xem đáp án

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = {e^{2x}}dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = \frac{{{e^{2x}}}}{2}}\end{array}} \right.\)

\( \Rightarrow I = \frac{{x{e^{2x}}}}{2}\left| {_0^1} \right. - \int\limits_0^1 {\frac{{{e^{2x}}}}{2}} dx = \left( {\frac{{x{e^{2x}}}}{2} - \frac{{{e^{2x}}}}{2}} \right)\left| {_0^1} \right. = \frac{{{e^2}}}{4} + \frac{1}{4}\)

\[ \Rightarrow a = \frac{1}{4};b = \frac{1}{4} \Rightarrow a + b = \frac{1}{2}\]

Đáp án cần chọn là: A


Câu 19:

Cho tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {e^x}\sin x\]. Gọi a,ba,b là các số nguyên thỏa mãn \[I = \frac{{{e^{\frac{\pi }{2}}} + a}}{b}\]

Xem đáp án

Chọn kết luận đúng:

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = {e^x}}\\{dv = sinxdx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = {e^x}dx}\\{v = - cosx}\end{array}} \right.\)

\(I = \int\limits_0^{\frac{\pi }{2}} {{e^x}sinxdx = - {e^x}cosx} \left| {_0^{\frac{\pi }{2}}} \right. + \int\limits_0^{\frac{\pi }{2}} {{e^x}cosxdx = 1 + } \int\limits_0^{\frac{\pi }{2}} {{e^x}cosxdx} \)

Đặt\({\left\{ {\begin{array}{*{20}{c}}{u = {e^x}}\\{dv = cosxdx}\end{array}} \right.^{}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = {e^x}dx}\\{v = sinxdx}\end{array}} \right.\)

Khi đó

\(\int\limits_0^{\frac{\pi }{2}} {{e^x}cosxdx = {e^x}sinx} \left| {_0^{\frac{\pi }{2}}} \right. - \int\limits_0^{\frac{\pi }{2}} {{e^x}sinxdx = {e^{\frac{\pi }{2}}} - } \int\limits_0^{\frac{\pi }{2}} {{e^x}sinxdx = {e^{\frac{\pi }{2}}} - I} \)

Do đó

\(I = = 1 + {e^{\frac{\pi }{2}}} - I \Leftrightarrow 2I = {e^{\frac{\pi }{2}}} + 1 \Leftrightarrow I = \frac{{{e^{\frac{\pi }{2}}} + 1}}{2}\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 2}\end{array}} \right.\)

Quan sát các đáp án ta thấy đáp án A thỏa mãn.

Đáp án cần chọn là: A


Câu 20:

Cho \[I = \mathop \smallint \limits_0^1 \left( {x + \sqrt {{x^2} + 15} } \right)dx = a + b\ln 3 + c\ln 5\] với \[a,b,c \in \mathbb{Q}\]. Tính tổng a+b+c.

Xem đáp án

\[I = \mathop \smallint \limits_0^1 \left( {x + \sqrt {{x^2} + 15} } \right)dx = \mathop \smallint \limits_0^1 xdx + \mathop \smallint \limits_0^1 \sqrt {{x^2} + 15} dx\]

\[{I_1} = \int\limits_0^1 {xdx} = \frac{1}{2}{x^2}\left| {_0^1} \right. = \frac{1}{2}\]

\({I_2} = \int\limits_0^1 {\sqrt {{x^2} + 15} } dx = x\sqrt {{x^2} + 15} \left| {_0^1} \right. - \int\limits_0^1 {x.\frac{x}{{\sqrt {{x^2} + 15} }}dx} \)

\[ = 4 - \int\limits_0^1 {\frac{{{x^2}}}{{\sqrt {{x^2} + 15} }}dx = 4 - \int\limits_0^1 {\sqrt {{x^2} + 15} dx + \int\limits_0^1 {\frac{{15}}{{\sqrt {{x^2} + 15} }}dx} } } \]

\( \Rightarrow 2{I_2} = 4 + 15\int\limits_0^1 {\frac{1}{{\sqrt {{x^2} + 15} }}} dx\)

Đặt

\[x + \sqrt {{x^2} + 15} = t \Rightarrow \left( {1 + \frac{x}{{\sqrt {{x^2} + 15} }}} \right)dx = dt \Leftrightarrow \frac{{dx}}{{\sqrt {{x^2} + 15} }} = \frac{{dt}}{t}\]

Khi đó:

\(\int\limits_0^1 {\frac{1}{{\sqrt {{x^2} + 15} }}} dx = \int\limits_{\sqrt {15} }^5 {\frac{{dt}}{t}} = \ln \left| t \right|\left| {_{\sqrt {15} }^5} \right. = ln5 - ln\sqrt {15} = \frac{1}{2}\ln 5 - \frac{1}{2}\ln 3\)

\[ \Rightarrow 2{I_2} = 4 + 15.\left( {\frac{1}{2}\ln 5 - \frac{1}{2}\ln 3} \right) \Leftrightarrow {I_2} = 2 + \frac{{15}}{4}\ln 5 - \frac{{15}}{4}\ln 3\]

\[I = {I_1} + {I_2} = \frac{1}{2} + 2 + \frac{{15}}{4}\ln 5 - \frac{{15}}{4}\ln 3 = \frac{5}{2} + \frac{{15}}{4}\ln 5 - \frac{{15}}{4}\ln 3 \Rightarrow a + b + c = \frac{5}{2} + \frac{{15}}{4} - \frac{{15}}{4} = \frac{5}{2}\]

Đáp án cần chọn là: B


Câu 21:

Cho hàm số f(x) là hàm số chẵn và liên tục trên \[\left[ { - 1;1} \right]\] thỏa mãn: \[\mathop \smallint \limits_{ - 1}^1 f\left( x \right)dx = \frac{{86}}{{15}}\] và \[f\left( 1 \right) = 5\]. Khi đó \[\mathop \smallint \limits_0^1 xf'\left( x \right)dx\] bằng:

Xem đáp án

Vì f(x) là hàm số chẵn và liên tục trên\[\left[ { - 1;1} \right]\] nên\[\mathop \smallint \limits_{ - 1}^1 f\left( x \right)dx = 2\mathop \smallint \limits_0^1 f\left( x \right)dx = \frac{{86}}{{15}}\]

\[ \Rightarrow \mathop \smallint \limits_0^1 f\left( x \right)dx = \frac{{43}}{{15}}\]

Xét tích phân\[I = \mathop \smallint \limits_0^1 xf'\left( x \right)dx\]

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = f\prime (x)dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = f(x)}\end{array}} \right.\)  khi đó ta có:

\[I = xf(x)\left| {_0^1} \right. - \int\limits_0^1 {f(x)dx = f(1) - \int\limits_0^1 {f(x)dx = 5 - \frac{{43}}{{15}} = \frac{{32}}{{15}}} } \]

Đáp án cần chọn là: A


Câu 22:

Nếu \[\mathop \smallint \limits_0^\pi f\left( x \right)\sin xdx = 20,\mathop \smallint \limits_0^\pi xf\left( x \right)'\sin xdx = 5\]thì\[I = \mathop \smallint \limits_0^{{\pi ^2}} f\left( {\sqrt x } \right)\cos \left( {\sqrt x } \right)dx\] bằng:

Xem đáp án

Xét tích phân\[I = \mathop \smallint \limits_0^{{\pi ^2}} f\left( {\sqrt x } \right)\cos \left( {\sqrt x } \right)dx\]

Đặt\[t = \sqrt x \Rightarrow {t^2} = x \Rightarrow 2tdt = dx\]

Đổi cận:\(\left\{ {\begin{array}{*{20}{c}}{x = 0 \Rightarrow t = 0}\\{x = {\pi ^2} \Rightarrow t = \pi }\end{array}} \right.\) khi đó ta có

\[I = \mathop \smallint \limits_0^\pi f\left( t \right)\cos \left( t \right)2tdt = \mathop \smallint \limits_0^\pi 2f\left( x \right)\cos x.xdx\]

Xét tích phân\[\mathop \smallint \limits_0^\pi xf'\left( x \right)\sin xdx = 5\]

Đặt \(\left\{ {\begin{array}{*{20}{c}}{u = xsinx}\\{f\prime (x)dx = dv}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = (sinx + xcosx)du}\\{v = f(x)}\end{array}} \right.\)

\[\begin{array}{l}\mathop \smallint \limits_0^\pi xf\left( x \right)'\sin xdx = 5\\ \Leftrightarrow (xsinx.f(x))\left| {_0^\pi } \right. - \int\limits_0^\pi {[f(x)sinx + xf(x)cosx]dx = 5} \end{array}\]

\( \Leftrightarrow - \int\limits_0^\pi {f(x)sinxdx - \int\limits_0^\pi {xf(x)cosxdx = 5} } \)

\[\begin{array}{l} \Leftrightarrow - 20 - \frac{I}{2} = 5\\ \Leftrightarrow \frac{I}{2} = - 25\\ \Leftrightarrow I = - 50\end{array}\]

Đáp án cần chọn là: B


Câu 23:

Cho hàm số y=f(x) liên tục trên đoạn \[\left[ {1;3} \right],\]thỏa mãn \[f(4 - x) = f(x),\forall x \in \left[ {1;3} \right]\;\] và \[\mathop \smallint \limits_1^3 xf\left( x \right)dx = - 2\]. Giá trị \(2\mathop \smallint \limits_1^3 f\left( x \right)dx\) bằng

Xem đáp án

Ta có:\[\mathop \smallint \limits_1^3 \left( {4 - x} \right)f\left( x \right)dx = 4\mathop \smallint \limits_1^3 f\left( x \right)dx - \mathop \smallint \limits_1^3 xf\left( x \right)dx\]

Đặt\[t = 4 - x \Rightarrow dt = - dx\]

Đổi cận:\(\left\{ {\begin{array}{*{20}{c}}{x = 1 \Rightarrow t = 3}\\{x = 3 \Rightarrow t = 1}\end{array}} \right.\) khi đó ta có:

\[\mathop \smallint \limits_1^3 \left( {4 - x} \right)f\left( x \right)dx = - \mathop \smallint \limits_3^1 tf\left( {4 - t} \right)dt = \mathop \smallint \limits_1^3 tf\left( {4 - t} \right)dt = \mathop \smallint \limits_1^3 tf\left( t \right)dt = \mathop \smallint \limits_1^3 xf\left( x \right)dx\]

\[\begin{array}{*{20}{l}}{ \Rightarrow \mathop \smallint \limits_1^3 xf\left( x \right)dx = 4\mathop \smallint \limits_1^3 f\left( x \right)dx - \mathop \smallint \limits_1^3 xf\left( x \right)dx}\\{ \Leftrightarrow 2\mathop \smallint \limits_1^3 f\left( x \right)dx = \mathop \smallint \limits_1^3 xf\left( x \right)dx = - 2}\end{array}\]

Đáp án cần chọn là: C


Câu 24:

Cho hàm số f(x) có \[f\left( 2 \right) = 0\;\] và \[f\prime (x) = \frac{{x + 7}}{{\sqrt {2x - 3} }},\;\forall x \in (\frac{3}{2}; + \infty )\;\]. Biết rằng \[\mathop \smallint \limits_4^7 f\left( {\frac{x}{2}} \right)dx = \frac{a}{b}(a,b \in \mathbb{Z},b > 0,\frac{a}{b}\] là phân số tối giản). Khi đó a+b bằng:

Xem đáp án

Xét tích phân\[\mathop \smallint \limits_4^7 f\left( {\frac{x}{2}} \right)dx = \frac{a}{b}\]

Đặt\[t = \frac{x}{2} \Rightarrow dt = \frac{1}{2}dx \Leftrightarrow dx = 2dt\]  Đổi cận:\(\left\{ {\begin{array}{*{20}{c}}{x = 4 \Rightarrow t = 2}\\{x = 7 \Rightarrow t = \frac{7}{2}}\end{array}} \right.\)

Khi đó ta có:\[I = 2\mathop \smallint \limits_2^{\frac{7}{2}} f\left( t \right)dt\]

Đặt \(\left\{ {\begin{array}{*{20}{c}}{u = f(t)}\\{dv = dt}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = f\prime (t)dt}\\{v = t - \frac{7}{2}}\end{array}} \right.\) khi đó ta có:

\[I = 2\left( {\left( {t - \frac{7}{2}} \right)f(t)\mid _2^{\frac{\pi }{2}} - \int\limits_2^{\frac{7}{2}} {\left( {t - \frac{7}{2}} \right)} f\prime (t)dt} \right)\]

\(I = 2\left( {\frac{7}{2}f\left( 0 \right) - \int\limits_2^{\frac{7}{2}} {\left( {x - \frac{7}{2}} \right)f'\left( x \right)dx} } \right)\)

\(I = 2\left( {\frac{7}{2}f\left( 2 \right) - \int\limits_2^{\frac{7}{2}} {\left( {x - \frac{7}{2}} \right).\frac{{x + 7}}{{\sqrt {2x - 3} }}dx} } \right)\)

\(I = - 2\int\limits_2^{\frac{7}{2}} {\left( {x - \frac{7}{2}} \right)} .\frac{{x + 7}}{{\sqrt {2x - 3} }}dx\)

\(I = \frac{{236}}{{15}}\)

\[ \Rightarrow a = 236,b = 15\]

Vậy\[a + b = 236 + 15 = 251\]

Đáp án cần chọn là: B


Câu 25:

Cho hàm số f(x) có \[f\left( {\frac{\pi }{2}} \right) = 2\] và \[f\prime (x) = xsinx\]. Giả sử rằng \[\mathop \smallint \limits_0^{\frac{\pi }{2}} \cos x.f\left( x \right)dx = \frac{a}{b} - \frac{{{\pi ^2}}}{c}\] (với a,b,c là các số nguyên dương, \(\frac{a}{b}\) tối giản). Khi đó a+b+c bằng:

Xem đáp án

Đặt \(\left\{ {\begin{array}{*{20}{c}}{u = f(x)}\\{dv = cosxdx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = f\prime (x)dx = xsinxdx}\\{v = sinx}\end{array}} \right.\)

Khi đó ta có:

\(\int\limits_0^{\frac{\pi }{2}} {cosx.f(x)dx = sinx.f(x)\left| {_0^{\frac{\pi }{2}}} \right.} - \int\limits_0^{\frac{\pi }{2}} {xsi{n^2}xdx} \)

\[ = sin\frac{\pi }{2}.f\left( {\frac{\pi }{2}} \right) - \int\limits_0^{\frac{\pi }{2}} {x\frac{{1 - cos2x}}{2}} dx\]

\[ = 2 - \frac{1}{2}\left( {\int\limits_0^{\frac{\pi }{2}} {xdx - \int\limits_0^{\frac{\pi }{2}} {xcos2xdx} } } \right)\]

\[\begin{array}{l} = 2 - \frac{1}{2}\left( {\frac{{{x^2}}}{2}\left| {_0^{\frac{\pi }{2}} - I} \right.} \right)\\ = 2 - \frac{1}{2}\left( {\frac{{{\pi ^2}}}{8} - I} \right)\\ = 2 - \frac{{{\pi ^2}}}{{16}} + \frac{I}{2}\end{array}\]

Xét tích phân\[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} x\cos 2xdx\]

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = cos2xdx}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = \frac{{sin2x}}{2}}\end{array}} \right.\) khi đó ta có:

\[I = x.\frac{{sin2x}}{2}\left| {_0^{\frac{\pi }{2}}} \right. - \frac{1}{2}\int\limits_0^{\frac{\pi }{2}} {sin2xdx} \]

\[I = \frac{\pi }{2}.\frac{{sin\pi }}{2} - 0 + \frac{1}{2}.\frac{{cos2x}}{2}\left| {_0^{\frac{\pi }{2}}} \right.\]

\[I = \frac{1}{4}(cos\pi - cos0)\]

\[I = \frac{1}{4}( - 1 - 1) = - \frac{1}{2}\]

Do đó\[\mathop \smallint \limits_0^{\frac{\pi }{2}} \cos x.f\left( x \right)dx = 2 - \frac{{{\pi ^2}}}{{16}} - \frac{1}{4} = \frac{7}{4} - \frac{{{\pi ^2}}}{{16}}\]

\[ \Rightarrow a = 7,\,\,b = 4,\,\,c = 16\]

Vậy\[a + b + c = 7 + 4 + 16 = 27\]Đáp án cần chọn là: D


Câu 26:

Cho hàm số f(x) liên tục trên \[\left( { - \frac{1}{2};2} \right)\;\]thỏa mãn \[f\left( 0 \right) = 2\], \({\int\limits_0^1 {\left[ {f'\left( x \right)} \right]} ^2}dx = 12 - 16\ln 2,\int\limits_0^1 {\frac{{f\left( x \right)}}{{{{\left( {x + 1} \right)}^2}}}} dx = 4\ln 2 - 2\). Tính \(\int\limits_0^1 {f\left( x \right)} dx\)

Xem đáp án

Xét tích phân: \[I = \mathop \smallint \limits_0^1 \frac{{f\left( x \right)}}{{{{\left( {x + 1} \right)}^2}}}dx\]

Đặt \(\left\{ {\begin{array}{*{20}{c}}{u = f(x)}\\{dv = \frac{{dx}}{{{{\left( {x + 1} \right)}^2}}}}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = f\prime (x)dx}\\{v = - \frac{1}{{x + 1}} + \frac{1}{2} = \frac{{x - 1}}{{2\left( {x + 1} \right)}}}\end{array}} \right.\)

Khi đó ta có:

\(\begin{array}{l}I = \frac{{x - 1}}{{2(x + 1)}}f\left( x \right)\left| {_0^1} \right. - \int\limits_0^1 {\frac{{x - 1}}{{2(x + 1)}}f'\left( x \right)} dx\\ \Leftrightarrow I = \frac{1}{2}f\left( 0 \right) - \frac{1}{2}\int\limits_0^1 {\frac{{x - 1}}{{x + 1}}f'\left( x \right)} dx\\ \Leftrightarrow 4ln2 - 2 = \frac{1}{2}.2 - \frac{1}{2}\int\limits_0^1 {\frac{{x - 1}}{{x + 1}}f'\left( x \right)} dx\\ \Leftrightarrow \int\limits_0^1 {\frac{{x - 1}}{{x + 1}}f'\left( x \right)} dx = 6 - 8ln2\end{array}\)

Xét\({\int\limits_0^1 {\left( {f\prime (x) + k\frac{{x - 1}}{{x + 1}}} \right)} ^2}dx = 0\)

\( \Leftrightarrow \int\limits_0^1 {{{[f\prime (x)]}^2}dx + 2k} \int\limits_0^1 {\frac{{x - 1}}{{x + 1}}} f'\left( x \right)dx + {k^2}\int\limits_0^1 {{{\left( {\frac{{x - 1}}{{x + 1}}} \right)}^2}} dx\)

\[ \Leftrightarrow 12 - 16ln2 + 2k.(6 - 8ln2) + {k^2}\int\limits_0^1 {{{\left( {1 - \frac{2}{{x + 1}}} \right)}^2}} dx = 0\]

\[ \Leftrightarrow 12 - 16ln2 + 2k.(6 - 8ln2) + {k^2}\int\limits_0^1 {\left( {1 - \frac{4}{{x + 1}} + \frac{4}{{{{\left( {x + 1} \right)}^2}}}} \right)} dx = 0\]

\[ \Leftrightarrow 12 - 16ln2 + 2k.(6 - 8ln2) + {k^2}\left( {x - 4ln|x + 1| - \frac{4}{{x + 1}}} \right)\left| {_0^1} \right. = 0\]

\[ \Leftrightarrow 12 - 16ln2 + 2k.(6 - 8ln2) + {k^2}(1 - 4ln2 - 2 + 4) = 0\]

\[ \Leftrightarrow (3 - 4ln2){k^2} - 4(3 - 4ln2)k + 4(3 - 4ln2) = 0\]

\[ \Leftrightarrow {k^2} - 4k + 4 = 0 \Leftrightarrow {(k - 2)^2} = 0 \Leftrightarrow k = 2\]

Khi đó ta có\[\mathop \smallint \limits_0^1 {\left( {f'\left( x \right) - 2.\frac{{x - 1}}{{x + 1}}} \right)^2}dx = 0 \Leftrightarrow f'\left( x \right) = 2.\frac{{x - 1}}{{x + 1}}\]

\[ \Rightarrow f\left( x \right) = \smallint f'\left( x \right)dx = 2\smallint \frac{{x - 1}}{{x + 1}}dx\]

\[ = 2\smallint \left( {1 - \frac{2}{{x + 1}}} \right)dx = 2\left( {x - 2\ln \left| {x + 1} \right|} \right) + C\]

Có\[f\left( 0 \right) = 2 \Rightarrow 2\left( {0 - 2\ln 1} \right) + C = 2 \Leftrightarrow C = 2\]

\[ \Rightarrow f\left( x \right) = 2\left( {x - 2\ln \left| {x + 1} \right|} \right) + 2 = 2x - 4\ln \left| {x + 1} \right| + 2\]

\( \Rightarrow \int\limits_0^1 {f(x)dx = \int\limits_0^1 {[2x - 4ln|x + 1| + 2]dx} } \)

\[ = ({x^2} + 2x)\left| {_0^1} \right. - 4\int\limits_0^1 {ln|x + 1|dx = 3 - 4J} \]

Ta có:\[J = \mathop \smallint \limits_0^1 \ln \left| {x + 1} \right|dx = \mathop \smallint \limits_0^1 \ln \left( {x + 1} \right)dx\]

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = ln(x + 1)}\\{dv = dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = \frac{1}{{x + 1}}dx}\\{v = x + 1}\end{array}} \right.\)

\[ \Rightarrow J = (x + 1)ln(x + 1)\left| {_0^1} \right. - \int\limits_0^1 {dx} \]

\[ \Rightarrow J = 2ln2 - 1.ln1 - x\left| {_0^1} \right.\]

\[ \Rightarrow J = 2ln2 - 1\]

Vậy\[\mathop \smallint \limits_0^1 f\left( x \right)dx = 3 - 4\left( {2\ln 2 - 1} \right) = 7 - 8\ln 2\]

Đáp án cần chọn là: D


Câu 27:

Cho hàm số f(x) liên tục trên R thỏa mãn điều kiện \[x.f({x^3}) + f({x^2} - 1) = {e^{{x^2}}},\;\forall x \in \mathbb{R}\]. Khi đó giá trị của \(\int\limits_{ - 1}^0 {f\left( x \right)dx} \) là:

Xem đáp án

Ta có: \[x.f\left( {{x^3}} \right) + f\left( {{x^2} - 1} \right) = {e^{{x^2}}} \Leftrightarrow {x^2}.f\left( {{x^3}} \right) + xf\left( {{x^2} - 1} \right) = x{e^{{x^2}}}\]

Lấy tích phân tư -1 đến 0 hai vế phương trình ta có:

\[\mathop \smallint \limits_{ - 1}^0 {x^2}.f\left( {{x^3}} \right)dx + \mathop \smallint \limits_{ - 1}^0 xf\left( {{x^2} - 1} \right)dx = \mathop \smallint \limits_{ - 1}^0 x{e^{{x^2}}}dx\,\,\left( * \right)\]

Xét\[{I_1} = \mathop \smallint \limits_{ - 1}^0 {x^2}.f\left( {{x^3}} \right)dx\]

Đặt\[t = {x^3} \Rightarrow dt = 3{x^2}dx \Rightarrow {x^2}dx = \frac{{dt}}{3}\]

Đổi cận: \(\left\{ {\begin{array}{*{20}{c}}{x = - 1 \Rightarrow t = - 1}\\{x = 0 \Rightarrow t = 0}\end{array}} \right.\) khi đó ta có:\[{I_1} = \frac{1}{3}\mathop \smallint \limits_{ - 1}^0 f\left( t \right)dt = \frac{1}{3}\mathop \smallint \limits_{ - 1}^0 f\left( x \right)dx\]

Xét \[{I_2} = \mathop \smallint \limits_{ - 1}^0 xf\left( {{x^2} - 1} \right)dx\]

Đặt\[u = {x^2} - 1 \Rightarrow du = 2xdx \Rightarrow xdx = \frac{1}{2}du\]

Đổi cận: \(\left\{ {\begin{array}{*{20}{c}}{x = - 1 \Rightarrow u = 0}\\{x = 0 \Rightarrow u = - 1}\end{array}} \right.\) khi đó ta có\[{I_2} = \frac{1}{2}\mathop \smallint \limits_0^{ - 1} f\left( u \right)du = - \frac{1}{2}\mathop \smallint \limits_{ - 1}^0 f\left( x \right)dx\]

Xét \[{I_3} = \mathop \smallint \limits_{ - 1}^0 x{e^{{x^2}}}dx\]

Đặt\[v = {x^2} \Rightarrow dv = 2xdx \Rightarrow xdx = \frac{1}{2}dv\]

Đổi cận:\(\left\{ {\begin{array}{*{20}{c}}{x = - 1 \Rightarrow v = 1}\\{x = 0 \Rightarrow v = 0}\end{array}} \right.\) khi đó ta có

\({I_3} = \frac{1}{2}\int\limits_0^1 {{e^v}dv = } \frac{1}{2}{e^v}\left| {_0^1} \right. = \frac{1}{2} - \frac{e}{2} = \frac{{1 - e}}{2}\)

Thay tất cả vào (*) ta có:

\[\begin{array}{*{20}{l}}{\frac{1}{3}\mathop \smallint \limits_{ - 1}^0 f\left( x \right)dx - \frac{1}{2}\mathop \smallint \limits_{ - 1}^0 f\left( x \right)dx = \frac{{1 - e}}{2}}\\{ \Leftrightarrow - \frac{1}{6}\mathop \smallint \limits_{ - 1}^0 f\left( x \right)dx = \frac{{1 - e}}{2}}\\{ \Leftrightarrow \mathop \smallint \limits_{ - 1}^0 f\left( x \right)dx = 3\left( {e - 1} \right)}\end{array}\]

Đáp án cần chọn là: D


Bắt đầu thi ngay