Sự đồng biến, nghịch biến
-
1325 lượt thi
-
18 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Cho hàm số \[y = f\left( x \right)\;\] đồng biến trên D và \[{x_1},{x_2} \in D\] mà \[{x_1} > {x_2}\], khi đó:
Hàm số y = f(x) đồng biến trên D nên:
Với mọi \[{x_1},{x_2} \in D\] mà\[{x_1} > {x_2}\] thì\[f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\]
Đáp án cần chọn là: A
Câu 2:
Cho hàm số y=f(x) nghịch biến và có đạo hàm trên (−5;5). Khi đó:
Đáp án cần chọn là: B
Câu 3:
Hình dưới là đồ thị hàm số y=f′(x). Hỏi hàm số y=f(x) đồng biến trên khoảng nào dưới đây?
Hàm số y=f′(x) dương trong khoảng \[\left( {2; + \infty } \right)\]
⇒ Hàm số y=f(x) đồng biến trên \[\left( {2; + \infty } \right)\]
Đáp án cần chọn là: C
Câu 4:
Cho hàm số y=f(x) xác định và liên tục trên \(\mathbb{R}\) và có đạo hàm f′(x)=x2−4f′(x)=x2−4. Chọn khẳng định đúng:
Ta có:\(f\prime (x) = {x^2} - 4 > 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > 2}\\{x < - 2}\end{array}} \right.\) và\[f'\left( x \right) = {x^2} - 4 < 0 \Leftrightarrow - 2 < x < 2\]
Do đó hàm số đồng biến trên các khoảng \[\left( { - \infty ; - 2} \right)\;\]và \[\left( {2; + \infty } \right);\]nghịch biến trên khoảng (−2;2).
Đáp án cần chọn là: A
Câu 5:
Cho hàm số y=f(x) xác định và có đạo hàm \[f\prime (x) = 2{x^2}\] trên R. Chọn kết luận đúng:
Ta có:\[f'\left( x \right) = 2{x^2} \ge 0,\forall x \in R\] và\[f'\left( x \right) = 0 \Leftrightarrow x = 0\]nên hàm số đồng biến trên R.
Đáp án cần chọn là: A
Câu 6:
Cho hàm số y=f(x) xác định và có đạo hàm trên (a;b). Chọn kết luận đúng:
Đáp án A: Nếu \[f\prime (x) \ge 0,\forall x \in (a;b)\;\] thì f(x) chưa chắc đã đồng biến trên (a;b), chẳng hạn hàm số\[y = f\left( x \right) = 2\] có \[f'\left( x \right) = 0 \ge 0,\forall x\] nhưng đây là hàm hằng nên không đồng biến, do đó A sai.
Đáp án B: Nếu \[f\prime (x) > 0,\forall x \in (a;b)\;\] thì f(x) đồng biến trên (a;b) đúng.
Đáp án C: Nếu \[f\prime (x) = 0,\forall x \in (a;b)\;\] thì f(x) không đổi trên (a;b), chưa chắc nó đã có giá trị bằng 0 nên C sai.
Đáp án D: Nếu \[f\prime (x) \le 0,\forall x \in (a;b)\;\] thì f(x) không đổi trên (a;b) sai.
Đáp án cần chọn là: B
Câu 7:
Hàm số \[y = - {x^4} - 2{x^2} + 3\] nghịch biến trên:
TXĐ: R.
Ta có:
\[y' = - 4{x^3} - 4x = - 4x({x^2} + 1)\]
\[ \Rightarrow y' = 0 \Leftrightarrow x = 0\]
Ta có bảng biến thiên
Từ bảng biến thiên ta thấy hàm nghịch biến trên khoảng \[\left( {0; + \infty } \right)\]
Đáp án cần chọn là: D
Câu 8:
Cho hàm số y=f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây là khẳng định đúng:
A, B sai vì hàm số chỉ nghịch biến trên các khoảng \[\left( { - \infty ; - 2} \right)\]và (0;2)
D sai vì hàm số chỉ đồng biến trên khoảng (−2;0) và \[\left( {2; + \infty } \right)\]
C đúng vì giá trị thấp nhất của y trên bảng biến thiên là 0.
Đáp án cần chọn là: C
Câu 9:
Cho hàm số: \[f(x) = - 2{x^3} + 3{x^2} + 12x - 5.\]. Trong các mệnh đề sau, tìm mệnh đề sai?
\[f\left( x \right) = - 2{x^3} + 3{x^2} + 12x - 5 \Rightarrow f'\left( x \right) = - 6{x^2} + 6x + 12 = 0 \Leftrightarrow x = 2;x = - 1\]
Ta có: \[y' < 0,\forall x \in \left( { - \infty ; - 1} \right) \cup \left( {2; + \infty } \right)\]nên hàm số nghịch biến trên các khoảng\[\left( { - \infty ; - 1} \right);\left( {2; + \infty } \right)\]và\[y' > 0,\forall x \in \left( { - 1;2} \right)\] nên nó đồng biến trên khoảng (−1;2).</>
Đối chiếu với các đáp án đã cho ta thấy các Đáp án A, B, C đều đúng vì các khoảng đó đều là khoảng nằm trong khoảng nghịch biến hoặc đồng biến của hàm số, chỉ có đáp án D sai.
Đáp án cần chọn là: D
Câu 10:
Tìm các giá trị của tham số m sao cho hàm số \[y' = - 3{x^2} - 2x + m\] nghịch biến trên R?
Ta có : \[y' = - 3{x^2} - 2x + m\]
Để hàm số y là hàm số nghịch biến trên R thì\[y' \le 0,\forall x \in R\]
\[ \Leftrightarrow - 3{x^2} - 2x + m \le 0,\forall x \in R\]
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 3 < 0}\\{\Delta \prime = 1 + 3m \le 0}\end{array}} \right. \Leftrightarrow m \le - \frac{1}{3}\)
Đáp án cần chọn là: B
Câu 11:
Tìm m để hàm số \[y' = \frac{{{x^3}}}{3} - 2m{x^2} + 4mx + 2\] nghịch biến trên khoảng (−2;0).
Ta có:\[y' = {x^2} - 4mx + 4m\]
Hàm số nghịch biến trên
(vì −2<x<0)
Xét hàm\[g\left( x \right) = \frac{{{x^2}}}{{x - 1}}\]trên (−2;0) ta có:
\[g\prime (x) = \frac{{{x^2} - 2x}}{{{{(x - 1)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0 \notin ( - 2;0)}\\{x = 2 \notin ( - 2;0)}\end{array}} \right. \Rightarrow g\prime (x) > 0,\forall x \in ( - 2;0)\]
Do đó hàm số y=g(x) đồng biến trên (−2;0)
Suy ra\[g\left( { - 2} \right) < g\left( x \right) < g\left( 0 \right),\forall x \in \left( { - 2;0} \right)\] hay\[ - \frac{4}{3} < g\left( x \right) < 0,\forall x \in \left( { - 2;0} \right)\]
Khi đó \[4m \le g\left( x \right),\forall x \in \left( { - 2;0} \right) \Leftrightarrow 4m \le - \frac{4}{3} \Leftrightarrow m \le - \frac{1}{3}\]Vậy
Đáp án cần chọn là: B
Câu 12:
Tìm tất cả các giá trị thực của tham số m để hàm số \[y = \frac{{m{x^{}} - 4}}{{2x + m}}\] nghịch biến trên từng khoảng xác định của nó?
Ta có \[y' = \frac{{{m^2} - 4}}{{{{\left( {2x + m} \right)}^2}}}\]
Để hàm số đã cho nghịch biến thì y′<0
\[ \Leftrightarrow {m^2} - 4 < 0 \Rightarrow - 2 < m < 2\]
Đáp án cần chọn là: B
Câu 13:
Bất phương trình có tập nghiệm là \[\left[ {a;b} \right].\;\]Hỏi tổng a+b có giá trị là bao nhiêu?
ĐKXĐ :
Tập xác định
:\[D = \left[ { - 2;4} \right]\]
Xét hàm số
\[f(x) = \sqrt {2{x^3} + 3{x^2} + 6x + 16} - \sqrt {4 - x} \]
\[ \Rightarrow f'(x) = \frac{{6{x^2} + 6x + 6}}{{2\sqrt {2{x^3} + 3{x^2} + 6x + 16} }} + \frac{1}{{2\sqrt {4 - x} }} > 0\]
Suy ra hàm số f(x) đồng biến trên tập xác định
Ta nhận thấy phương trình\[f\left( 1 \right) = 2\sqrt 3 \Rightarrow \]với\[x \ge 1\]thì
Suy ra tập nghiệm của bất phương trình là \[\left[ {1;4} \right]\]
Do đó tổng a+b=5.
Đáp án cần chọn là: A
Câu 14:
Cho f(x) mà đồ thị hàm số \[y = f\prime (x)\;\] như hình bên. Hàm số \[y = f(x - 1) + {x^2} - 2x\;\] đồng biến trên khoảng?
Ta có:\[y' = f'\left( {x - 1} \right) + 2x - 2 = 0 \Leftrightarrow f'\left( {x - 1} \right) + 2\left( {x - 1} \right) = 0\]
Đặt\[t = x - 1\] ta có\[f'\left( t \right) + 2t = 0 \Leftrightarrow f'\left( t \right) - \left( { - 2t} \right) = 0\]
Vẽ đồ thị hàm số \[y = f'\left( t \right)\] và \[y = - 2t\] trên cùng mặt phẳng tọa độ ta có:
Xét\[y' \ge 0 \Leftrightarrow f'\left( t \right) \ge - 2t \Rightarrow \] Đồ thị hàm số \[y = f\prime (t)\;\] nằm trên đường thẳng \[y = - 2t\].
Xét \[x \in \left( {1;2} \right) \Rightarrow t \in \left( {0;1} \right) \Rightarrow \] thỏa mãn.
Xét \[x \in \left( { - 1;0} \right) \Rightarrow t \in \left( { - 2; - 1} \right) \Rightarrow \] Không thỏa mãn.
Xét \[x \in \left( {0;1} \right) \Rightarrow t \in \left( { - 1;0} \right) \Rightarrow \] Không thỏa mãn.
Xét \[x \in \left( { - 2; - 1} \right) \Rightarrow t \in \left( { - 3; - 2} \right) \Rightarrow \] Không thỏa mãn.
Đáp án cần chọn là: A
Câu 15:
Cho hàm số y=f(x) có đồ thị như hình bên:
Hàm số \[y = - 2f(x)\;\] đồng biến trên khoảng:
Dựa vào đồ thị hàm số ta có hàm số y=f(x) đồng biến trên các khoảng \[\left( { - \infty ;\,0} \right)\]và \[\left( {2;\, + \infty } \right).\]
Hàm số y=f(x) nghịch biến trên (0;2).
Xét hàm số: \[y = - 2f\left( x \right)\] ta có: \[y' = - 2f'\left( x \right).\]
Hàm số đồng biến \[ \Leftrightarrow - 2f'\left( x \right) \ge 0 \Leftrightarrow f'\left( x \right) \le 0 \Leftrightarrow 0 \le x \le 2.\]
Vậy hàm số \[y = - 2f(x)\;\] đồng biến ⇔\[x \in \left[ {0;2} \right].\]
Đáp án cần chọn là: A
Câu 16:
Cho hàm số đa thức f(x) có đạo hàm tràm trên R. Biết f\[\left( 0 \right) = 0\] và đồ thị hàm số \[y = f\prime (x)\]như hình sau.
Hàm số \[g\left( x \right) = \left| {4f\left( x \right) + {x^2}} \right|\;\] đồng biến trên khoảng nào dưới đây ?
Đặt\[h\left( x \right) = 4f\left( x \right) + {x^2}\]ta có\[h'\left( x \right) = 4f\left( x \right) + 2x = 4\left[ {f'\left( x \right) + \frac{x}{2}} \right]\]
Số nghiệm của phương trình \[h\prime (x) = 0\;\] là số giao điểm của đồ thị hàm số \[y = f\prime (x)\;\] và đường thẳng \[y = - \frac{x}{2}\].
Vẽ đồ thị hàm số \[y = f\prime (x)\;\] và đường thẳng \[y = - \frac{x}{2}\] trên cùng mặt phẳng tọa độ ta có:
Dựa vào đồ thị hàm số ta thấy \[h\prime (x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 2}\\{x = 0}\\{x = 4}\end{array}} \right.\]
Khi đó ta có BBT hàm số \[y = h(x)\]:
Khi đó ta suy ra được BBT hàm số \[g\left( x \right) = \left| {h\left( x \right)} \right|\] như sau:
Dựa vào BBT và các đáp án ta thấy hàm số g(x) đồng biến trên (0;4)
Đáp án cần chọn là: B
Câu 17:
Cho hàm số y=f(x) liên tục trên \(\mathbb{R}\)và có đạo hàm \[f\prime (x) = {x^2}(x - 2)({x^2} - 6x + m)\;\] với mọi \[x \in \mathbb{R}\]. Có bao nhiêu số nguyên m thuộc đoạn \[\left[ { - 2019;2019} \right]\;\]để hàm số \[g(x) = f(1 - x)\;\] nghịch biến trên khoảng \[\left( { - \infty ; - 1} \right)?\]
Ta có:
\[g'\left( x \right) = {\left[ {f\left( {1 - x} \right)} \right]^\prime } = {\left( {1 - x} \right)^\prime }f'\left( {1 - x} \right) = - f'\left( {1 - x} \right)\]
\[ = - {\left( {1 - x} \right)^2}\left( {1 - x - 2} \right)\left[ {{{\left( {1 - x} \right)}^2} - 6\left( {1 - x} \right) + m} \right]\]
\[\begin{array}{l} = - {\left( {1 - x} \right)^2}\left( { - 1 - x} \right)\left( {{x^2} + 4x + m - 5} \right)\\ = {\left( {x - 1} \right)^2}\left( {x + 1} \right)\left( {{x^2} + 4x + m - 5} \right)\end{array}\]
Hàm số g(x) nghịch biến trên \[\left( { - \infty ; - 1} \right)\]\[ \Leftrightarrow g'\left( x \right) \le 0,\forall x \in \left( { - \infty ; - 1} \right) \Leftrightarrow \left( {x + 1} \right)\left( {{x^2} + 4x + m - 5} \right) \le 0,\forall x \in \left( { - \infty ; - 1} \right)\]
\[ \Leftrightarrow {x^2} + 4x + m - 5 \ge 0,\forall x \in \left( { - \infty ; - 1} \right)\](do\[x + 1 < 0,\forall x \in \left( { - \infty ; - 1} \right)\])
\[ \Leftrightarrow h\left( x \right) = {x^2} + 4x - 5 \ge - m\,\,\forall x \in \left( { - \infty ; - 1} \right)\]
\[ \Leftrightarrow - m \le \mathop {\min }\limits_{\left( { - \infty ; - 1} \right]} h\left( x \right)\]
Ta có\[h'\left( x \right) = 2x + 4 = 0 \Leftrightarrow x = - 2\]
BBT:
Dựa vào BBT ta có \[ - m \le - 9 \Leftrightarrow m \ge 9\]
Mà\[m \in \left[ { - 2019;2019} \right]\]và m nguyên nên \[m \in \left[ {9;10;11;...;2019} \right]\] hay có \[2019 - 9 + 1 = 2011\]giá trị của m thỏa mãn.
Đáp án cần chọn là: C
Câu 18:
Hàm số \[y = {x^3} - 3{{\rm{x}}^2} + 4\] đồng biến trên:
TXĐ: D=R
Ta có:\[y' = 3{{\rm{x}}^2} - 6{\rm{x}}\]
\[ \Rightarrow y' = 0 \Leftrightarrow x = 0\]hoặc x=2
Ta có bảng biến thiên
Vậy hàm số đồng biến trên các khoảng \[\left( { - \infty ;0} \right)\]và \[\left( {2; + \infty } \right)\]
Đáp án cần chọn là: B