Thứ năm, 26/12/2024
IMG-LOGO
Trang chủ Lớp 11 Toán Đề kiểm tra Cuối kì 1 Toán 11 KNTT có đáp án

Đề kiểm tra Cuối kì 1 Toán 11 KNTT có đáp án

Đề kiểm tra Cuối kì 1 Toán 11 KNTT có đáp án - Đề 02

  • 195 lượt thi

  • 37 câu hỏi

  • 90 phút

Danh sách câu hỏi

Câu 2:

Với mọi số thực $a,$ $b$ công thức nào dưới đây là sai?


Câu 3:

Cho góc $\alpha $ thỏa mãn $\cos \alpha = \frac{3}{5}$. Giá trị của $P = \cos 2\alpha $


Câu 4:

Tập xác định $D$ của hàm số $y = 2\tan x$


Câu 5:

Trong các hàm số sau, hàm số nào là hàm số chẵn?


Câu 6:

Nghiệm của phương trình $\cos 2x = 1$


Câu 9:

Trong các dãy số sau, dãy số nào là một cấp số cộng?


Câu 11:

Trong các dãy số sau, dãy số nào không phải là một cấp số nhân?


Câu 17:

Trong các khẳng định sau, khẳng định nào đúng?


Câu 18:

Cho hình chóp $S.ABCD$, gọi $O$ là giao điểm của hai đường chéo $BD$$AC.$ Phát biểu nào dưới đây đúng?


Câu 19:

Cho tứ diện $ABCD,$ vị trí tương đối của hai đường thẳng $AC$$BD$


Câu 20:

Cho tứ diện $ABCD.$ Gọi $M,$ $N$ lần lượt là các điểm thuộc các cạnh $AB,\,AC$ sao cho $\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}$; $I,\,J$ lần lượt là trung điểm của $BD$$CD.$

Khẳng định nào sau đây đúng?


Câu 21:

Cho đường thẳng $a$ và mặt phẳng $\left( P \right)$ không có điểm chung. Kết luận nào sau đây đúng?


Câu 22:

Cho hình chóp tứ giác $S.ABCD.$ Gọi $M,\,N$ lần lượt là trung điểm của $SA,\,SC.$ Đường thẳng $MN$ song song với mặt phẳng nào dưới đây?

Cho hình chóp tứ giác S.ABCD gọi M, N lần lượt là (ảnh 1)

Câu 24:

Trong các mệnh đề sau, mệnh đề nào sai?


Câu 25:

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành tâm $O.$ Gọi $M,$ $N,$ $P$ lần lượt là trung điểm của $SA,$ $SD,$ $AB.$ Khẳng định nào sau đây đúng?


Câu 26:

Cho các đường thẳng không song song với phương chiếu. Khẳng định nào sau đây là đúng?


Câu 33:

Hàm số nào sau đây liên tục trên $\mathbb{R}$?


Câu 36:

Tính các giới hạn sau:

a) \[\mathop {\lim }\limits_{n \to + \infty } \left( {1 + n - {n^2}} \right).\]  b) \[\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 4} - 2}}{x}.\]

Xem đáp án

a) Ta có: \[1 + n - {n^2} = {n^2}\left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right).\]

Ta có: $\mathop {\lim }\limits_{n \to + \infty } {n^2} = + \infty ;$ $\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right) = \mathop {\lim }\limits_{n \to + \infty } \frac{1}{{{n^2}}} + \mathop {\lim }\limits_{n \to + \infty } \frac{1}{n} - \mathop {\lim }\limits_{n \to + \infty } 1 = 0 + 0 - 1 = - 1 < 0.$

$ \Rightarrow \mathop {\lim }\limits_{n \to + \infty } \left( {1 + n - {n^2}} \right) = \mathop {\lim }\limits_{n \to + \infty } \left[ {{n^2}\left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right)} \right] = \mathop {\lim }\limits_{n \to + \infty } {n^2}.\mathop {\lim }\limits_{n \to + \infty } \left( {\frac{1}{{{n^2}}} + \frac{1}{n} - 1} \right) = - \infty .$

b) \[\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 4} - 2}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt {{x^2} + 4} - 2} \right).\left( {\sqrt {{x^2} + 4} + 2} \right)}}{{x\left( {\sqrt {{x^2} + 4} + 2} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} + 4 - 4}}{{x\left( {\sqrt {{x^2} + 4} + 2} \right)}}\]

$ = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{x\left( {\sqrt {{x^2} + 4} + 2} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{x}{{\sqrt {{x^2} + 4} + 2}} = \frac{0}{{\sqrt {0 + 4} + 2}} = 0.$


Câu 37:

Một thợ thủ công muốn vẽ trang trí một hình vuông kích thước 4 m × 4 m bằng cách vẽ một hình vuông mới với các đỉnh là trung điểm các cạnh của hình vuông ban đầu và tô kín màu lên hai tam giác đối diện (như hình vẽ dưới đây). Quá trình vẽ và tô theo quy luật đó được lặp lại 10 lần. Tính số tiền nước sơn để người thợ đó hoàn thành trang trí hình vuông trên? Biết tiền nước sơn 1 m2 là 80 000 đồng.

Một thợ thủ công muốn vẽ trang trí một hình vuông  (ảnh 1)
Xem đáp án

Theo quy luật trang trí một hình vuông trên thì ta có các tam giác được tô màu sẽ là tam giác vuông cân.

Gọi ${u_n}$ là diện tích của hai tam giác được tô màu sau lần vẽ thứ $n$, với $n \in {\mathbb{N}^*}.$

Độ dài cạnh góc vuông của hai tam giác vuông cân được tô màu theo lần vẽ đầu tiên là $\frac{4}{2} = 2\,\,\,\left( {\text{m}} \right).$ Khi đó diện tích của hai tam giác được tô màu sau lần vẽ đầu tiên là

${u_1} = 2\left( {\frac{1}{2}.2.2} \right) = 4$ $\left( {{{\text{m}}^{\text{2}}}} \right){\text{.}}$

Độ dài cạnh góc vuông của hai tam giác vuông cân được tô màu theo lần vẽ thứ hai là $\frac{1}{2}.\sqrt {{2^2} + {2^2}} \, = \sqrt 2 \,\,\left( {\text{m}} \right).$ Khi đó diện tích của hai tam giác được tô màu sau lần vẽ thứ hai là

 ${u_2} = 2\left( {\frac{1}{2}.\sqrt 2 .\sqrt 2 } \right) = 4.\frac{1}{2}$ $\left( {{{\text{m}}^{\text{2}}}} \right){\text{.}}$

Độ dài cạnh góc vuông của hai tam giác vuông cân được tô màu theo lần vẽ thứ ba là\[\frac{1}{2}.\sqrt {{{\left( {\sqrt 2 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}} = 1\,\,\left( {\text{m}} \right).\] Khi đó diện tích của hai tam giác được tô màu sau lần vẽ thứ ba là

${u_3} = 2\left( {\frac{1}{2}.1.1} \right) = 4.{\left( {\frac{1}{2}} \right)^2}$ $\left( {{{\text{m}}^{\text{2}}}} \right){\text{.}}$

Khi đó, dãy số $\left( {{u_n}} \right)$ là một cấp số nhân với số hạng đầu ${u_1} = 4$ và công bội $q = \frac{1}{2}.$

Ta có công thức số hạng tổng quát ${u_n} = 4.{\left( {\frac{1}{2}} \right)^{n - 1}}$ $\left( {{{\text{m}}^{\text{2}}}} \right){\text{.}}$

Tổng diện tích của các tam giác được tô màu sau lần vẽ thứ 10 là:

${S_{10}} = \frac{{4\left[ {1 - {{\left( {\frac{1}{2}} \right)}^{10}}} \right]}}{{1 - \frac{1}{2}}} = \frac{{1\,\,023}}{{128}}$ $\left( {{{\text{m}}^{\text{2}}}} \right){\text{.}}$

Vậy số tiền nước sơn là $\frac{{1\,\,023}}{{128}}.80\,\,000 = 639\,\,375$ đồng.


Bắt đầu thi ngay