Trắc nghiệm Đường thẳng vuông góc với mặt phẳng có đáp án (Vận dụng)
-
933 lượt thi
-
10 câu hỏi
-
25 phút
Danh sách câu hỏi
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và . Hình chiếu vuông góc của điểm S lên mặt phẳng (ABCD) trùng với trọng tâm tam giác ABC. Gọi là góc giữa đường thẳng SB với mặt phẳng (SCD), tính sin biết rằng SB = a.
Đáp án D
Gọi M là trung điểm của SD, nhận xét góc giữa SB và (SCD) cũng bằng góc giữa OM và (SCD) (Vì OM//SB)
Gọi H là hình chiếu của O trên (SCD) ⇒
Trong (SBD) kẻ OE//SH, khi đó tứ diện OECD là tứ diện vuông nên
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và SC = . Gọi H, K lần lượt là trung điểm của các cạnh AB và AD. Khẳng định nào sau đây là sai?
Đáp án C
Vì H là trung điểm của AB và tam giác SAB đều nên SH⊥AB
Lại có
Câu 3:
Cho hình chóp S.ABC có , SA = SB = SC. Gọi I là hình chiếu vuông góc của S lên mp(ABC). Chọn khẳng định đúng trong các khẳng định sau
Đáp án B
Gọi SA = SB = SC = a
Gọi I là trung điểm của AC thì I là tâm đường tròn ngoại tiếp tam giác ABC.
Do SA = SB = SC và IA = IB = IC nên I là trọng tâm tam giác ABC.
Vậy I là trọng tâm tam giác ABC.
Câu 4:
Cho hình chóp S.ABCD với đáy ABCD là hình thang vuông tại A và D, có AD = CD = a, AB = 2a. Cạnh bên SA vuông góc với đáy (ABCD), E là trung điểm của AB. Chỉ ra mệnh đề sai trong các mệnh đề sau:
Đáp án D
Từ giả thết suy ra ADCE là hình vuông
Dùng phương pháp loại trừ, suy ra D là đáp án sai.
Câu 5:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, . Cạnh bên SA = 2a và vuông góc với đáy. Mặt phẳng () đi qua A vuông góc với SC. Tính diện tích S của thiết diện tạo bởi () với hình chóp đã cho.
Đáp án B
Trong tam giác SAC, kẻ AISC (ISC)
Trong mp(SBC), kẻ đi qua I vuông góc với SC cắt SB tại M.
Trong mp(SCD), kẻ đi qua I vuông góc với SC cắt SD tại N.
Khi đó thiết diện của hình chóp cắt bởi mp () là tứ giác AMIN.
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với mp(ABCD). Gọi () là mặt phẳng qua A và vuông góc với SB. Mặt phẳng () cắt hình chóp theo thiết diện là hình gì?
Đáp án B
Ta có AD vuông góc với SA và AB ⇒ ADmp(SAB) ⇒ ADSB.
Vẽ đường cao AH trong tam giác SAB
Lại có AD và AH qua A và vuông góc với SB.
Vậy mặt phẳng () chính là mặt phẳng (AHD).
Mặt khác AD // mp(SBC) mà ADmp(AHD)
Vậy mặt phẳng (SBC) cắt mặt phẳng (AHD) theo giao tuyến HK // AD.
Do đó mặt cắt là hình thang ADKH mà ADmp(SAB) ⇒ ADAH.
Vậy ADKH là hình thang vuông.
Câu 7:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA(ABC). Mặt phẳng (P) đi qua trung điểm M của AB và vuông góc với SB cắt AC, SC, SB lần lượt tại N, P, Q. Tứ giác MNPQ là hình gì?
Đáp án A
Vậy thiết diện là hình thang MNPQ vuông tại M và Q.
Câu 8:
Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều, chiều cao bằng cạnh đáy. Thiết diện của hình lăng trụ và mặt phẳng qua B' vuông góc với A'C là
Đáp án B
Gọi M, M′, N, R lần lượt là trung điểm của AC, A′C′, AM và AB.
Tam giác A′B′C′ đều suy ra B′M′A′C′.
Mà AA′ vuông góc với đáy (A′B′C′) ⇒ AA′B′M′.
Vậy B′M′ vuông góc với (ACC′A′) ⇒ B′M′A′C.
Gọi I là trung điểm của AA′, ta có A′C // MI.
Mà M′A′AM là hình vuông ⇒ M′NMI.
Do đó M′NA′C.
Suy ra mặt cắt là mp(B′M′N)
Mặt phẳng này cắt hai mặt phẳng song song (ABC) và (A′B′C′) theo hai giao tuyến B′M′ và NR song song nhau.
Mặt khác B′M′(ACC′A′) ⇒ B′M′M′N.
Vậy B′M′NR là hình thang vuông.
Câu 9:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với mp(ABCD), SA= . Gọi () là mặt phẳng qua A và vuông góc với SB. Mặt phẳng () cắt hình chóp theo một thiết diện có diện tích S. Tính S theo a.
Đáp án B
Ta có AD vuông góc với SA và AB ⇒ ADmp(SAB) ⇒ ADSB.
Vẽ đường cao AH trong tam giác SAB
Lại có AD và AH qua A và vuông góc với SB.
Vậy mặt phẳng () chính là mặt phẳng (AHD)
Mặt khác AD // mp(SBC) mà ADmp(AHD)
Vậy mặt phẳng (SBC) cắt mặt phẳng (AHD) theo giao tuyến HK // AD.
Do đó mặt cắt là hình thang ADKH mà ADmp(SAB) ⇒ ADAH
Suy ra tứ giác ADKH là hình thang vuông.
Câu 10:
Cho hình chóp đều S.ABC có đáy ABC là tam giác đều cạnh a, tâm O, đường cao AA'; SO = 2a. Gọi M là điểm thuộc đoạn OA' (MA';MO). Mặt phẳng () đi qua M và vuông góc với AA'. Đặt AM = x. Tính diện tích S của thiết diện tạo bởi () với hình chóp S.ABC.
Đáp án A
Vì S.ABC là hình chóp đều nên SO(ABC)
(O là tâm của tam giác ABC)
Do đó SOAA′ mà ()AA′ suy ra SO // ()
Tương tự ta cũng có BC // ()
Qua M kẻ IJ // BCvới IAB, J∈AC; kẻ MN // SO với NSA′.
Qua N kẻ EF // BC với ESB, FSC
Khi đó thiết diện là hình thang IJFE.