IMG-LOGO
Trang chủ Lớp 7 Toán Trắc nghiệm Toán 7 Bài 3. Hai đường thẳng song song có đáp án (Phần 2)

Trắc nghiệm Toán 7 Bài 3. Hai đường thẳng song song có đáp án (Phần 2)

Trắc nghiệm Toán 7 Bài 3. Hai đường thẳng song song có đáp án (Thông hiểu)

  • 563 lượt thi

  • 8 câu hỏi

  • 15 phút

Danh sách câu hỏi

Câu 1:

Cho hình vẽ:

Media VietJack

Biết rằng EF // BC. Số đo của \(\widehat {BEF}\) là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Theo bài ta có EF // BC    (1)

\(\widehat {{\rm{AEF}}}\)\(\widehat {{\rm{EBC}}}\) là hai góc nằm ở vị trí đồng vị   (2)

Từ (1) và (2) suy ra \(\widehat {{\rm{AEF}}} = \widehat {{\rm{EBC}}} = 50^\circ \) (tính chất hai đường thẳng song song).

Lại có \(\widehat {BEF} + \widehat {AEF} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {BEF} = 180^\circ - \widehat {AEF}\)

Hay \(\widehat {BEF} = 180^\circ - 50^\circ = 130^\circ .\)

Vậy ta chọn phương án D.


Câu 2:

Cho hình vẽ. Biết rằng x // y; đường thẳng z cắt hai đường thẳng x, y lần lượt tại A, B sao cho \({\widehat {\rm{A}}_1} = 60^\circ \).

Media VietJack

Số đó của \({\widehat {\rm{B}}_2}\) là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: A

Vì x // y nên \({\widehat {\rm{A}}_1}{\rm{ = }}{\widehat {\rm{B}}_1}{\rm{ = 60}}^\circ \) (hai góc đồng vị)

Ta có \({\widehat {\rm{B}}_1} = {\widehat {\rm{B}}_2}\) (hai góc đối đỉnh)

Suy ra \({\widehat {\rm{B}}_2} = 60^\circ \)

Vậy ta chọn phương án A.


Câu 3:

Cho hình vẽ

Media VietJack

Chọn khẳng định sai:

Xem đáp án

Hướng dẫm giải

Đáp án đúng là: D

Ta có \({\widehat {\rm{B}}_1} + {\widehat {\rm{B}}_1} = 180^\circ \) (hai góc kề bù)

Hay \({\widehat {\rm{B}}_1} + 130^\circ = 180^\circ \)

Suy ra \({\widehat {\rm{B}}_1} = 180^\circ - 130^\circ = 50^\circ \) nên phương án B đúng.

Ta lại có \({\widehat {\rm{A}}_1} + {\widehat {\rm{A}}_4} = 180^\circ \) (hai góc kề bù)

Hay \(50^\circ + {\widehat {\rm{A}}_4} = 180^\circ \)

Suy ra \({\widehat {\rm{A}}_4} = 180^\circ - 50^\circ = 130^\circ \) nên phương án C đúng.

Vì \({\widehat {\rm{A}}_1} = {\widehat {\rm{B}}_1}\) (cùng bằng 50°)

Mà \({\widehat {\rm{A}}_1}\) và \({\widehat {\rm{B}}_1}\) nằm ở vị trí đồng vị

Do đó x // y nên A đúng.

Ta có \(\widehat {xAB} = {\widehat A_1}\) (hai góc đối đỉnh)

Do đó \(\widehat {xAB} = 50^\circ \) nên D sai.

Vậy ta chọn phương án D.


Câu 4:

Cho hình vẽ

Media VietJack

Biết rằng a // b; b // c và \({\widehat {\rm{A}}_1} = 75^\circ \). Số đo của \({\widehat {\rm{B}}_2}\) là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Theo bài ta có: a // b và b // c suy ra a // c.

Do đó \({\widehat {\rm{A}}_1} = {\widehat {\rm{B}}_1} = 75^\circ \) (hai góc đồng vị)

Ta lại có \({\widehat {\rm{B}}_1} + {\widehat {\rm{B}}_2} = 180^\circ \) (hai góc kề bù)

Hay \(75^\circ + {\widehat {\rm{B}}_2} = 180^\circ \)

Suy ra \({\widehat {\rm{B}}_2} = 180^\circ - 75^\circ = 105^\circ \)

Vậy ta chọn phương án D.


Câu 5:

Cho hình vẽ

Media VietJack

Số đo của \(\widehat {{\rm{ABC}}}\) là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Media VietJack

Ta có: AB AD và DC AD.

Suy ra AB // CD (hai đường thẳng phân biệt cũng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau).

Do đó \(\widehat {DCB} = {\widehat B_1}\) (hai góc so le trong)

Nên \({\widehat B_1} = 65^\circ .\)

Mà \(\widehat {{\rm{ABC}}} + {\widehat {\rm{B}}_1} = 180^\circ \) (hai góc kề bù)

Hay \(\widehat {{\rm{ABC}}} + 65^\circ = 180^\circ \)

Suy ra \(\widehat {{\rm{ABC}}} = 180^\circ - 65^\circ = 115^\circ \)

Vậy ta chọn phương án C.


Câu 6:

Cho hình vẽ

Media VietJack

Biết rằng BF là phân giác của \(\widehat {{\rm{ABC}}}\), EF // BC và \(\widehat {{\rm{FBC}}} = 35^\circ \). Số đo của \(\widehat {{\rm{AEF}}}\) là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Theo bài ra ta có BF là phân giác của \(\widehat {{\rm{ABC}}}\)

Nên \(\widehat {{\rm{ABF}}} = \widehat {{\rm{FBC}}}\) (tính chất tia phân giác của một góc)   (1)

Mà \(\widehat {{\rm{ABF}}} + \widehat {{\rm{FBC}}} = \widehat {{\rm{ABC}}}\) (hai góc kề nhau)    (2)

Từ (1) và (2) suy ra \(\widehat {{\rm{ABF}}} = \widehat {{\rm{FBC}}} = \frac{{\widehat {{\rm{ABC}}}}}{2}\)

Suy ra \(\widehat {{\rm{ABC}}} = 2\widehat {{\rm{FBC}}} = 2.35^\circ = 70^\circ \)

Ta lại có EF // BC.

Suy ra \(\widehat {{\rm{AEF}}} = \widehat {{\rm{ABC}}} = 70^\circ \) (hai góc đồng vị)

Vậy ta chọn phương án B.


Câu 7:

Cho hình vẽ

Media VietJack

Biết rằng BF là phân giác của \(\widehat {{\rm{ABC}}}\), EF // BC và \(\widehat {{\rm{FBC}}} = 35^\circ \). Số đo của \(\widehat {{\rm{AEF}}}\) là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Theo bài ra ta có BF là phân giác của \(\widehat {{\rm{ABC}}}\)

Nên \(\widehat {{\rm{ABF}}} = \widehat {{\rm{FBC}}}\) (tính chất tia phân giác của một góc)   (1)

Mà \(\widehat {{\rm{ABF}}} + \widehat {{\rm{FBC}}} = \widehat {{\rm{ABC}}}\) (hai góc kề nhau)    (2)

Từ (1) và (2) suy ra \(\widehat {{\rm{ABF}}} = \widehat {{\rm{FBC}}} = \frac{{\widehat {{\rm{ABC}}}}}{2}\)

Suy ra \(\widehat {{\rm{ABC}}} = 2\widehat {{\rm{FBC}}} = 2.35^\circ = 70^\circ \)

Ta lại có EF // BC.

Suy ra \(\widehat {{\rm{AEF}}} = \widehat {{\rm{ABC}}} = 70^\circ \) (hai góc đồng vị)

Vậy ta chọn phương án B.


Câu 8:

Cho hình vẽ

Media VietJack

Biết rằng x // y và \[{\widehat {\rm{F}}_2} = 2{\widehat {\rm{F}}_1}\]. Số đo của \({\widehat {\rm{E}}_1}\) là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Ta có \({\widehat {\rm{F}}_1} + {\widehat {\rm{F}}_2} = 180^\circ \) (hai góc kề bù)   (1)

\({\widehat {\rm{F}}_2} = 2{\widehat {\rm{F}}_1}\) (giả thiết)      (2)

Từ (1) và (2) suy ra \({\widehat {\rm{F}}_1} + 2{\widehat {\rm{F}}_1} = 180^\circ \)

Hay \(3{\widehat {\rm{F}}_1} = 180^\circ \)

Suy ra \({\widehat {\rm{F}}_1} = \frac{{180^\circ }}{3} = 60^\circ \)

Theo bài ta có x // y

Do đó \({\widehat {\rm{E}}_1} = {\widehat {\rm{F}}_1} = 60^\circ \) (hai góc đồng vị)

Vậy ta chọn phương án D.


Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm


Các bài thi hot trong chương