Trắc nghiệm Toán 12 Cánh diều Bài 2. Nguyên hàm của một số hàm số sơ cấp có đáp án
Trắc nghiệm Toán 12 Cánh diều Bài 2. Nguyên hàm của một số hàm số sơ cấp có đáp án
-
45 lượt thi
-
20 câu hỏi
-
60 phút
Danh sách câu hỏi
Câu 1:
I. Nhận biết
Chọn mệnh đề đúng trong các mệnh đề dưới đây.
Đáp án đúng là: A
Ta có: \[\int {{x^\alpha }dx = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C{\rm{ }}\left( {\alpha \ne - 1} \right)} .\]
Câu 3:
Hàm số \[F\left( x \right)\] là một nguyên hàm của hàm số \[y = \ln x\] nếu
Đáp án đúng là: C
Câu 4:
Trong các mệnh đề sau, chọn mệnh đề đúng.
Đáp án đúng là: C
Ta có: \[\int {\frac{4}{5}{x^3}dx = \frac{1}{5}{x^4} + C.} \]
Với C = 0 thì ta có \[\frac{1}{5}{x^4}\] là một nguyên hàm của hàm số \[y = \frac{4}{5}{x^3}.\]
Câu 5:
Công thức nguyên hàm nào sau đây là công thức sai?
Đáp án đúng là: A
Ta có: \[\int {\frac{{dx}}{x} = \ln \left| x \right| + C} \] với \[x \ne 0.\]
Câu 6:
Nguyên hàm của hàm số \[f\left( x \right) = 3\cos x - 1\] bằng
Đáp án đúng là: A
Ta có: \[\int {\left( {3\cos x - 1} \right)dx = 3\int {\cos xdx - \int {1dx = } } } {\rm{ }}3\sin x - x + C\]
Câu 7:
Nguyên hàm của hàm số \[f\left( x \right) = {x^2} - 3x + \frac{1}{x}\] là
Đáp án đúng là: B
Ta có: \[\int {f\left( x \right)} dx = \int {\left( {{x^2} - 3x + \frac{1}{x}} \right)} dx\]
\[ = \int {{x^2}dx - \int {3xdx + \int {\frac{1}{x}dx} } } \]
\[ = \frac{{{x^3}}}{3} - \frac{3}{2}{x^2} + \ln \left| x \right| + C.\]
Câu 8:
Hàm số \[F\left( x \right) = 2\sin x - 3\cos x + 1\] là một nguyên hàm của hàm số nào sau đây?
Đáp án đúng là: C
Ta có: \[f\left( x \right) = F'\left( x \right) = {\left( {2\sin x - 3\cos x + 1} \right)^\prime }\]\[ = 2\cos x + 3\sin x\].
Vậy \[F\left( x \right) = 2\sin x - 3\cos x + 1\] là một nguyên hàm của hàm số \[f\left( x \right) = 2\cos x + 3\sin x.\]
Câu 9:
Tìm nguyên hàm của hàm số \[f\left( x \right) = {e^{3x}}\left( {1 - 3{e^{ - 5x}}} \right)\]
Đáp án đúng là: A
Ta có: \[\int {f\left( x \right)dx} = \int {{e^{3x}}\left( {1 - 3{e^{ - 5x}}} \right)dx} \]
\[ = \int {\left( {{e^{3x}} - 3{e^{ - 2x}}} \right)dx} \]
\[ = \int {{e^{3x}}dx} - 3\int {{e^{ - 2x}}dx} \]
\[ = \frac{{{e^{3x}}}}{3} + \frac{3}{2}{e^{ - 2x}} + C\].
Câu 10:
Cho hàm số \[f\left( x \right)\] thỏa mãn \[f'\left( x \right) = x + \sin x\] và \[f\left( 0 \right) = 1\]. Tìm \[f\left( x \right)\]
Đáp án đúng là: A
Ta có: \[f\left( x \right) = \int {f'\left( x \right)dx = \int {\left( {x + \sin x} \right)dx} } \]\[ = \frac{{{x^2}}}{2} - \cos x + C.\]
Mà \[f\left( 0 \right) = 1\] nên \[\frac{{{0^2}}}{2} - \cos 0 + C = 1\] hay C = 2.
Vậy \[f\left( x \right) = \frac{{{x^2}}}{2} - \cos x + 2.\]
Câu 11:
Cho \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right) = {e^x} + 2x\] thỏa mãn \[F\left( 0 \right) = \frac{3}{2}.\] Tính \[F\left( 1 \right) + F\left( 2 \right).\]
Đáp án đúng là: D
Ta có: \[F\left( x \right) = \int {f\left( x \right)dx} = \int {\left( {{e^x} + 2x} \right)dx} \] \[ = {e^x} + {x^2} + C.\]
Mà \[F\left( 0 \right) = \frac{3}{2}\] nên \[{e^0} + {0^2} + C = \frac{3}{2}\].
Suy ra \[C = \frac{3}{2} - 1 = \frac{1}{2}\].
Do đó \[F\left( x \right) = {e^x} + {x^2} + \frac{1}{2}.\]
Có: \[F\left( 1 \right) + F\left( 2 \right) = e + 1 + \frac{1}{2} + {e^2} + 4 + \frac{1}{2}\]\[ = {e^2} + e + 6.\]
Vậy \[F\left( 1 \right) + F\left( 2 \right) = {e^2} + e + 6.\]
Câu 12:
Cho các mệnh đề dưới đây:
(I). \[F\left( x \right) = \frac{{{x^4}}}{4} - \frac{3}{2}{x^2} + \ln \left| x \right| + C\] là nguyên hàm của hàm số \[f\left( x \right) = {x^3} - 3x + \frac{1}{x}.\]
(II). \[F\left( x \right) = \frac{{{{\left( {5x + 3} \right)}^6}}}{6} + C\] là nguyên hàm của hàm số \[f\left( x \right) = {\left( {5x + 3} \right)^5}\].
(III). \[F\left( x \right) = \frac{3}{2}x\sqrt x + \frac{4}{3}x\sqrt[3]{x} + \frac{5}{4}x\sqrt[4]{x} + C\] là nguyên hàm của hàm số
\[f\left( x \right) = \frac{{2{x^3}\sqrt x }}{7} - 2{x^2}\sqrt x + \frac{2}{3}x\sqrt x + C.\]
Số mệnh đề đúng trong các mệnh đề trên là
Đáp án đúng là: A
(I): \[\int {f\left( x \right)dx} = \int {\left( {{x^3} - 3x + \frac{1}{x}} \right)} dx\]\[ = \frac{{{x^4}}}{4} - \frac{3}{2}{x^2} + \ln \left| x \right| + C.\]
Vậy \[F\left( x \right) = \frac{{{x^4}}}{4} - \frac{3}{2}{x^2} + \ln \left| x \right| + C\] là nguyên hàm của hàm số \[f\left( x \right) = {x^3} - 3x + \frac{1}{x}.\]
Mệnh đề (I) là mệnh đề đúng.
(II): \[\int {f\left( x \right)dx} = \int {{{\left( {5x + 3} \right)}^5}dx} \]\[ = \frac{{{{\left( {5x + 3} \right)}^6}}}{{30}} + C\]
Vậy \[F\left( x \right) = \frac{{{{\left( {5x + 3} \right)}^6}}}{{30}} + C\] là nguyên hàm của hàm số \[f\left( x \right) = {\left( {5x + 3} \right)^5}\].
Mệnh đề (II) là mệnh đề sai.
(III). Ta có: \[F'\left( x \right) = {\left( {\frac{3}{2}x\sqrt x + \frac{4}{3}x\sqrt[3]{x} + \frac{5}{4}x\sqrt[4]{x} + C} \right)^\prime }\]
\[ = {\left( {\frac{3}{2}{x^{\frac{3}{2}}} + \frac{4}{3}{x^{\frac{4}{3}}} + \frac{5}{4}{x^{\frac{5}{4}}} + C} \right)^\prime }\]
\[ = \frac{9}{4}{x^{\frac{1}{2}}} + \frac{{16}}{9}{x^{\frac{1}{3}}} + \frac{{25}}{{16}}{x^{\frac{1}{4}}}\]
\[ = \frac{9}{4}\sqrt x + \frac{{16}}{9}\sqrt[3]{x} + \frac{{25}}{{16}}\sqrt[4]{x}\].
Vậy mệnh đề (III) là sai.
Câu 13:
Cho hàm số \[f\left( x \right) = 2x + {e^x}\]. Tìm một nguyên hàm \[F\left( x \right)\] của hàm số \[f\left( x \right)\] thỏa mãn \[F\left( 0 \right) = 2024.\]
Đáp án đúng là: A
Ta có: \[F\left( x \right) = \int {f\left( x \right)dx = \int {\left( {2x + {e^x}} \right)dx} } \]\[ = {x^2} + {e^x} + C.\]
Mà \[F\left( 0 \right) = 2024\] nên \[{0^2} + {e^0} + C = 2024\] hay C = 2023.
Vậy \[F\left( x \right) = {x^2} + {e^x} + 2023.\]
Câu 14:
Cho hàm số \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] với \[f\left( x \right) = \frac{{x{{\left( {x - 3} \right)}^2}}}{{{x^2}}}\] biết \[F\left( 1 \right) = \frac{5}{2}\]. Tính \[F\left( 2 \right)\].
Đáp án đúng là: B
Ta có: \[F\left( x \right) = \int {f\left( x \right)dx} = \int {\frac{{x{{\left( {x - 3} \right)}^2}}}{{{x^2}}}} dx\]
\[ = \int {\frac{{x\left( {{x^2} - 6x + 9} \right)}}{{{x^2}}}} dx\]
\[ = \int {\frac{{{x^3} - 6{x^2} + 9x}}{{{x^2}}}} dx\]
\[ = \int {\left( {x - 6 + \frac{9}{x}} \right)} dx\]
\[ = \frac{{{x^2}}}{2} - 6x + 9\ln \left| x \right| + C.\]
Mà \[F\left( 1 \right) = \frac{5}{2}\] nên \[\frac{1}{2} - 6 + 9\ln \left| 1 \right| + C = \frac{5}{2}\] hay C = 8.
Suy ra \[F\left( x \right) = \frac{{{x^2}}}{2} - 6x + 9\ln \left| x \right| + 8.\]
Do đó, \[F\left( 2 \right) = 9\ln 2 - 2\].
Câu 15:
Nguyên hàm của hàm số \[f\left( x \right) = {\sin ^2}x\] là
Đáp án đúng là: A
Ta có: \[\int {f\left( x \right)dx} = \int {{{\sin }^2}xdx = \int {\left( {\frac{{1 - \cos 2x}}{2}} \right)dx} } \]
\[ = \int {\frac{1}{2}dx - \frac{1}{2}} \int {\cos 2xdx = \frac{1}{2}x - \frac{{\sin 2x}}{4} + C.} \]
Câu 16:
Biết \[\int {\sin 3x{e^x}dx = F\left( x \right) + C} \] và \[F\left( 0 \right) + C = 1\]. Khi đó C bằng
Đáp án đúng là: B
Đặt \[\left\{ \begin{array}{l}u = \sin 3x\\dv = {e^x}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = 3\cos 3xdx\\v = {e^x}\end{array} \right.\]
Ta có: \[I = \int {\sin 3x.{e^x}} dx = \sin 3x.{e^x} - 3\int {\cos 3x.{e^x}dx} \] (1)
Đặt \[\left\{ \begin{array}{l}u = \cos 3x\\dv = {e^x}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = - 3\sin 3xdx\\v = {e^x}\end{array} \right.\]
Ta có: \[\int {\cos 3x.{e^x}dx} = \cos 3x.{e^x} + 3\int {\sin 3x.{e^x}dx} \] (2)
Thay (2) vào (1) ta được:
\[I = \int {\sin 3x.{e^x}} dx = \sin 3x.{e^x} - 3\left( {\cos 3x.{e^x} + 3\int {\sin 3x.{e^x}dx} } \right)\]
\[I = \int {\sin 3x.{e^x}} dx = \sin 3x.{e^x} - 3\cos 3x.{e^x} - 9I\]
\[10I = \sin 3x.{e^x} - 3\cos 3x.{e^x}\]
\[I = \frac{1}{{10}}\left( {\sin 3x - 3\cos 3x} \right){e^x} + C\]
Mà \[F\left( 0 \right) + C = 1 \Leftrightarrow - \frac{3}{{10}} + C = 1\] hay \[C = \frac{{13}}{{10}}.\]
Câu 17:
Giả sử \[F\left( x \right) = \left( {a{x^2} + bx + c} \right){e^x}\] là một nguyên hàm của hàm số \[f\left( x \right) = {x^2}{e^x}.\] Tính tích \[P = abc\].
Đáp án đúng là: B
Ta có: \[F\left( x \right) = \int {f\left( x \right)dx} = \int {{x^2}{e^x}dx} \]
Đặt \[\left\{ \begin{array}{l}u = {x^2}\\dv = {e^x}dx\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = 2xdx\\v = {e^x}\end{array} \right.\]
Suy ra \[F\left( x \right) = {x^2}{e^x} - 2\int {x{e^x}dx} \] (1)
Đặt \[\left\{ \begin{array}{l}u = x\\dv = {e^x}dx\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = dx\\v = {e^x}\end{array} \right.\]
Do đó, \[\int {x{e^x}dx} = x{e^x} - \int {{e^x}} dx = x{e^x} - {e^x}\] (2).
Thay (2) vào (1), ta được: \[F\left( x \right) = {x^2}{e^x} - 2\left( {x{e^x} - {e^x}} \right)\]
\[F\left( x \right) = \left( {{x^2} - 2{e^x} + 2} \right){e^x}\].
Do đó, \[a = 1,b = - 2,c = 2\].
Vậy \[P = abc = - 4.\]
Câu 18:
Biết \[F\left( x \right) = \sin x{e^x}\] là một nguyên hàm của hàm số \[f\left( x \right).{e^x}\]. Biết hàm số \[f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\]. Tìm nguyên hàm của hàm số \[f'\left( x \right).{e^x}\].
Đáp án đúng là: D
Ta có: \[F'\left( x \right) = {\left( {\sin x{e^x}} \right)^\prime } = \left( {\sin x + \cos x} \right){e^x} = f\left( x \right).{e^x}\]
Suy ra \[f\left( x \right) = \sin x + \cos x.\]
Khi đó \[f'\left( x \right).{e^x} = \left( {\cos x - \sin x} \right){e^x}\]
Đặt \[\left\{ \begin{array}{l}u = \cos x - \sin x\\dv = {e^x}dx\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = \left( { - \sin x - \cos x} \right)dx\\v = {e^x}\end{array} \right.\]
Ta có: \[I = \int {\left( {\cos x - \sin x} \right){e^x}dx = \left( {\cos x - \sin x} \right){e^x} + \int {\left( {\sin x + \cos x} \right){e^x}dx} } \] (1)
Đặt \[\left\{ \begin{array}{l}u = \cos x + \sin x\\dv = {e^x}dx\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = \left( { - \sin x + \cos x} \right)dx\\v = {e^x}\end{array} \right.\]
Ta có: \[\int {\left( {\sin x + \cos x} \right){e^x}} dx = \left( {\cos x + \sin x} \right){e^x} - \int {\left( {\cos x - \sin x} \right){e^x}} dx\] (2).
Thay (2) vào (1) ta được:
\[I = \int {\left( {\cos x - \sin x} \right){e^x}dx = \left( {\cos x - \sin x} \right){e^x} + \left( {\sin x + \cos x} \right){e^x}} - I\]
\[ \Leftrightarrow 2I = 2\cos x{e^x} + C\]
\[ \Leftrightarrow I = \cos x{e^x} + C.\]
Vậy \[\int {f'\left( x \right).{e^x}} dx = \cos x{e^x} + C.\]
Câu 19:
Giả sử \[F\left( x \right)\] là một nguyên hàm của \[f\left( x \right) = \frac{{\ln \left( {x + 3} \right)}}{{{x^2}}}\] với \[x > - 3\] sao cho \[F\left( { - 2} \right) + F\left( 1 \right) = 0\]. Giá trị của \[F\left( { - 1} \right) + F\left( 2 \right)\] bằng
Đáp án đúng là: D
Đặt \[\left\{ \begin{array}{l}u = \ln \left( {x + 3} \right)\\dv = \frac{{dx}}{{{x^2}}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}du = \frac{{dx}}{{x + 3}}\\v = \frac{1}{x}\end{array} \right.\]
Ta có: \[\int {\frac{{\ln \left( {x + 3} \right)}}{{{x^2}}}} dx = - \frac{1}{x}\ln \left( {x + 3} \right) + \int {\frac{{dx}}{{x\left( {x + 3} \right)}}} \]
Đặt \[I = \int {\frac{{dx}}{{x\left( {x + 3} \right)}}} = \frac{1}{3}\int {\left( {\frac{1}{x} - \frac{1}{{x + 3}}} \right)dx = \frac{1}{3}\ln \left| x \right| - \frac{1}{3}\ln \left| {x + 3} \right| = \frac{1}{3}\ln \left| {\frac{x}{{x + 3}}} \right|} \].
Suy ra \[F\left( x \right) = - \frac{1}{x}\ln \left( {x + 3} \right) + \frac{1}{3}\ln \left| {\frac{x}{{x + 3}}} \right| + C.\]
Lại có \[F\left( { - 2} \right) + F\left( 1 \right) = 0\]
\[\left( {\frac{1}{3}\ln 2 + C} \right) + \left( { - \ln 4 + \frac{1}{3}\ln \frac{1}{4} + C} \right) = 0\]
\[ \Leftrightarrow 2C = \frac{7}{3}\ln 2 \Leftrightarrow C = \frac{7}{6}\ln 2.\]
Suy ra \[F\left( { - 1} \right) + F\left( 2 \right) = \ln 2 + \frac{1}{3}\ln 2 - \frac{1}{2}\ln 5 + \frac{1}{3}\ln \frac{2}{5} + \frac{7}{3}\ln 2 = \frac{{10}}{3}\ln 2 - \frac{5}{6}\ln 5.\]
Câu 20:
Cho hàm số \[f\left( x \right)\] thỏa mãn \[f\left( 1 \right) = 1\] và \[{\left( {{x^2} + 1} \right)^2}f'\left( x \right) = {\left[ {f\left( x \right)} \right]^2}\left( {{x^2} - 1} \right)\] với mọi \[x \in \mathbb{R}\]. Giá trị của \[f\left( 2 \right)\] bằng
Đáp án đúng là: A
Từ giả thiết, ta có: \[{\left( {{x^2} + 1} \right)^2}f'\left( x \right) = {\left[ {f\left( x \right)} \right]^2}\left( {{x^2} - 1} \right)\]
\[ \Leftrightarrow f'\left( x \right) = \frac{{{{\left[ {f\left( x \right)} \right]}^2}\left( {{x^2} - 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}} > 0,\forall x \in \left[ {1;2} \right]\].
Xét với mọi \[x \in \left[ {1;2} \right]\], ta có:
\[\frac{{f'\left( x \right)}}{{{{\left[ {f\left( x \right)} \right]}^2}}} = \frac{{\left( {{x^2} - 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}} \Leftrightarrow \int {\frac{{f'\left( x \right)}}{{{{\left[ {f\left( x \right)} \right]}^2}}}dx} = \int {\frac{{\left( {{x^2} - 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}} dx\].
\[ \Rightarrow \int {\frac{{f'\left( x \right)}}{{{{\left[ {f\left( x \right)} \right]}^2}}}dx} = \int {\frac{{\left( {1 - \frac{1}{{{x^2}}}} \right)}}{{{{\left( {x + \frac{1}{x}} \right)}^2}}}} dx = \int {\frac{{d\left( {x + \frac{1}{x}} \right)}}{{{{\left( {x + \frac{1}{x}} \right)}^2}}}} \]
\[ \Rightarrow - \frac{1}{{f\left( x \right)}} = \frac{{ - 1}}{{x + \frac{1}{x}}} + C \Leftrightarrow f\left( x \right) = x + \frac{1}{x} + C.\]
Mà \[f\left( 1 \right) = 1 \Leftrightarrow 1 = 2 + C \Leftrightarrow C = - 1\].
Vậy \[f\left( x \right) = x + \frac{1}{x} - 1\].
Suy ra \[f\left( 2 \right) = 2 + \frac{1}{2} - 1 = \frac{3}{2}.\]