IMG-LOGO
Trang chủ Lớp 10 Toán Trắc nghiệm Toán 10 Bài 1. Không gian mẫu và biến cố có đáp án

Trắc nghiệm Toán 10 Bài 1. Không gian mẫu và biến cố có đáp án

Trắc nghiệm Toán 10 Bài 1. Không gian mẫu và biến cố có đáp án

  • 1237 lượt thi

  • 15 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

Phép thử ngẫu nhiên (gọi tắt là phép thử) là gì?

Xem đáp án

Phép thử ngẫu nhiên (gọi tắt là phép thử) là một hoạt động mà ta không thể biết trước được kết quả của nó.

Ta chọn phương án A.


Câu 2:

Gọi A là biến cố của không gian mẫu Ω  . Phát biểu nào sau đây đúng?

Xem đáp án

Biến cố luôn là tập con của không gian mẫu nên A Ω.

Ta chọn phương án B.


Câu 3:

Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:

Xem đáp án

Phép thử ngẫu nhiên là phép thử mà ta chưa biết được kết quả là gì.

Phương án D không phải là phép thử vì ta biết chắc chắn kết quả chỉ có thể là một số cụ thể số bi xanh và số bi đỏ.

Vậy ta chọn phương án D.


Câu 4:

Biến cố chắc chắn kí hiệu là gì?

Xem đáp án

Biến cố chắc chắn là biến cố luôn xảy ra, kí hiệu là Ω.

Ta chọn phương án B.


Câu 5:

Một nhóm có 3 bạn nam và 2 bạn nữ. Chọn ngẫu nhiên cùng lúc 2 bạn đi làm vệ sinh lớp. Số phần tử của không gian mẫu của phép thử là:

Xem đáp án

Do ta chọn 2 bạn khác nhau từ 5 bạn trong nhóm và không tính thứ tự nên số phần tử của không gian mẫu là C52  = 10.

Ta chọn phương án A.


Câu 6:

Gieo hai đồng tiền một lần. Kí hiệu S, N lầm lượt để chỉ đồng tiền lật sấp, lật ngửa. Xác định biến cố M: “Hai đồng tiền xuất hiện hai mặt không giống nhau”.

Xem đáp án

Biến cố M: “Hai đồng tiền xuất hiện hai mặt không giống nhau” là M = {NS, SN}.

Ta chọn phương án B.


Câu 7:

Một hộp có:

• 2 viên bi trắng được đánh số từ 1 đến 2;

• 3 viên bi xanh được đánh số từ 3 đến 5;

• 2 viên bi đỏ được đánh số từ 6 đến 7.

Lấy ngẫu nhiên hai viên bi, mô tả không gian mẫu nào dưới đây là đúng?

Xem đáp án

Mỗi viên bi đánh một số, nên 2 viên bi lấy ra mang số khác nhau.

Vậy Ω ={(m, n)| 1 ≤ m ≤ 7, 1 ≤ n ≤ 7 và m ≠ n}.

Ta chọn phương án C.


Câu 8:

Gieo hai đồng tiền một lần. Kí hiệu S, N lần lượt để chỉ đồng tiền lật sấp, lật ngửa. Mô tả không gian mẫu nào dưới đây là đúng?

Xem đáp án

Không gian mẫu Ω = {SN, NS, SS, NN}.

Ta chọn phương án D.


Câu 9:

Một nhóm có 3 bạn nam và 2 bạn nữ. Chọn ngẫu nhiên cùng lúc 2 bạn đi làm vệ sinh lớp. Số kết quả thuận lợi cho biến cố “Chọn được 1 bạn nam và 1 bạn nữ” là:

Xem đáp án

Chọn 1 bạn nữ từ 2 bạn nữ có  = 2 cách chọn;

Chọn 1 bạn nam từ 3 bạn nam có  = 3 cách chọn.

Theo quy tắc nhân có tất cả 2.3 = 6 cách chọn ra 1 bạn nam và 1 bạn nữ từ nhóm bạn.

Do đó số kết quả thuận lợi cho biến cố “Chọn được 1 bạn nam và 1 bạn nữ” là 6.

Ta chọn phương án D.


Câu 10:

Cho tập hợp A gồm các số nguyên dương nhỏ hơn hoặc bằng 60. Chọn 1 phần tử trong tập hợp A. Gọi B là biến cố “Phần tử được chọn chia hết cho 10”. Số kết quả thuận lợi cho biến cố B là:

Xem đáp án

 Tập hợp A = {1; 2; 3; …; 58; 59; 60}.

Tìm các phần tử trong A chia hết cho 10: {10; 20; 30; 40; 50; 60}.

Như vậy A có 6 phần tử chia hết cho 10, do đó số kết quả thuận lợi cho biến cố B “Phần tử được chọn chia hết cho 10” là 6.

Ta chọn phương án A.


Câu 11:

Trên bàn có 3 quả táo và 4 quả cam. Xác định số phần tử không gian mẫu của phép thử lấy 2 quả ở trên bàn sau đó bỏ ra ngoài rồi lấy tiếp 1 quả nữa.

Xem đáp án

Lấy 2 quả trong 7 quả ở trên bàn và không tính thứ tự nên số cách là:  = 21 (cách).

Sau khi bỏ 2 quả ra ngoài còn lại 5 quả. Lấy 1 quả trong 5 quả trên bàn có 5 cách.

Vậy số phần tử không gian mẫu là: 21. 5 = 105.

Ta chọn phương án C.


Câu 12:

Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:
Xem đáp án

Lấy ngẫu nhiên cùng lúc 4 viên bi trong 6 + 8 + 10 = 24 viên bi có số cách là:

 = 10 626.

Số phần tử của không gian mẫu là 10 626.

Lấy 4 viên bi trong 16 viên bi đỏ, trắng có C164 cách. Như vậy số kết quả thuận lợi cho biến cố “Lấy 4 viên bi không có màu xanh” là C164=1820 .

Suy ra số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:

10 626 – 1 820 = 8 806.

Vậy có 8 806 kết quả thuận lợi cho biến cố B.

Ta chọn phương án D.


Câu 13:

Bộ bài tú lơ khơ có 52 quân bài. Rút ngẫu nhiên ra 4 quân bài. Số kết quả thuận lợi cho biến cố A: “Rút ra được tứ quý K” là:

Xem đáp án

Trong bộ bài chỉ có 4 quân K để tạo thành 1 tứ quý K nên muốn rút được 4 quân bài là tứ quý K thì chỉ có 1 cách.

Vậy số phần tử thuận lợi của biến cố A: “Rút ra được tứ quý K” là 1.

Ta chọn phương án C.


Câu 14:

Gieo 2 con xúc xắc và gọi kết quả xảy ra là tích số hai chấm ở mặt trên. Số phần tử của không gian mẫu là:

Xem đáp án

Một con xúc xắc có 6 mặt và khi gieo được ra kết quả là 6 trường hợp của số chấm.

Như vậy khi gieo 2 con xúc xắc thì tích số chấm của 2 xúc xắc sẽ là 6. 6 = 36 kết quả.

Nhưng mỗi kết quả được tính 2 lần nên số kết quả xảy ra là: 36 : 2 = 18.

Vậy số phần tử của không gian mẫu là 18.

Ta chọn phương án C.


Bắt đầu thi ngay