IMG-LOGO
Trang chủ Lớp 10 Toán Đề kiểm tra giữa học kì 2 Toán 10 Chân trời sáng tạo có đáp án

Đề kiểm tra giữa học kì 2 Toán 10 Chân trời sáng tạo có đáp án

Đề kiểm tra giữa học kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 1

  • 1356 lượt thi

  • 37 câu hỏi

  • 90 phút

Danh sách câu hỏi

Câu 1:

Tìm khẳng định đúng trong các khẳng định sau.
Xem đáp án

Đáp án: A


Câu 4:

Cho tam thức f(x) = x2 – 8x + 16. Khẳng định nào sau đây là đúng?
Xem đáp án
Đáp án: C

Câu 5:

Trong các phát biểu sau, phát biểu nào sai?
Xem đáp án

Đáp án: C


Câu 6:

Bất phương trình nào dưới đây không là bất phương trình bậc hai một ẩn?
Xem đáp án
Đáp án: C

Câu 7:

x = 1 là một nghiệm của bất phương trình nào sau đây?
Xem đáp án

Đáp án: D


Câu 9:

Tập nghiệm của bất phương trình x2 – 7x + 10 < 0 là
Xem đáp án

Đáp án: D


Câu 10:

Phương trình x2 – (m + 1)x + 1 = 0 vô nghiệm khi và chỉ khi
Xem đáp án

Đáp án đúng là: B

Phương trình x2 – (m + 1)x + 1 = 0 vô nghiệm khi và chỉ khi ∆ < 0 (m + 1)2 – 4 < 0

m2 + 2m – 3 < 0 – 3 < m < 1. 


Câu 11:

Giá trị nào là nghiệm của phương trình \(\sqrt {{x^2} + x + 11} = \sqrt { - 2{x^2} - 13x + 16} \) ?
Xem đáp án

Đáp án: C


Câu 12:

Số nghiệm của phương trình \(\sqrt {4 - 3{x^2}} = 2x - 1\) là
Xem đáp án

Đáp án đúng là: B

Bình phương hai vế của phương trình \(\sqrt {4 - 3{x^2}} = 2x - 1\) ta được

4 – 3x2 = 4x2 – 4x + 1.

Sau khi thu gọn ta được 7x2 – 4x – 3 = 0. Từ đó tìm được x = 1 hoặc \(x = - \frac{3}{7}\).

Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy chỉ có x = 1 thỏa mãn.

Vậy phương trình đã cho có 1 nghiệm là x = 1.


Câu 13:

Giá trị nào sau đây là một nghiệm của phương trình\(\sqrt {3{x^2} - 6x + 1} = \sqrt {{x^2} - 3} \)?
Xem đáp án

Đáp án đúng là: A

Cách 1. Thay lần lượt các giá trị ở từng đáp án vào cho đến khi tìm được giá trị thỏa mãn.

Cách 2. Giải phương trình

Bình phương hai vế của phương trình \(\sqrt {3{x^2} - 6x + 1} = \sqrt {{x^2} - 3} \) ta được

3x2 – 6x + 1 = x2 – 3.

Rút gọn ta được x2 – 3x + 2 = 0. Từ đó ta tìm được x = 1 hoặc x = 2.

Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy chỉ có x = 2 thỏa mãn.

Vậy phương trình đã cho có 1 nghiệm là x = 2.


Câu 16:

Cho ba vectơ \(\overrightarrow x = \left( {1;\, - 2} \right)\), \(\overrightarrow y = \left( {5;\,\,10} \right)\), \(\overrightarrow z = \left( { - \frac{1}{2};\,1} \right)\). Khẳng định nào sau đây là đúng?
Xem đáp án

Đáp án: B


Câu 18:

Trong mặt phẳng tọa độ Oxy, cho hai vectơ \(\overrightarrow a = \left( {2;\,\, - 1} \right)\)\(\overrightarrow b = \left( {3;\,\,4} \right)\). Tọa độ của vectơ \(\overrightarrow c = \overrightarrow a + 3\overrightarrow b \)
Xem đáp án

Đáp án đúng là: A

\(\overrightarrow c = \overrightarrow a + 3\overrightarrow b \) = (2; – 1) + 3 . (3; 4) = (2; – 1) + (9; 12) = (2 + 9; – 1 + 12) = (11; 11).


Câu 19:

Số đo góc giữa hai vectơ \(\overrightarrow x = \left( {1;\,\, - 2} \right)\)\[\overrightarrow y = \left( { - 2;\,\, - 6} \right)\] bằng
Xem đáp án

Đáp án đúng là: B

Ta có: \(\cos \left( {\overrightarrow x ,\,\overrightarrow y } \right) = \frac{{\overrightarrow x \cdot \overrightarrow y }}{{\left| {\overrightarrow x } \right| \cdot \left| {\overrightarrow y } \right|}} = \frac{{1.\left( { - 2} \right) + \left( { - 2} \right).\left( { - 6} \right)}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 6} \right)}^2}} }} = \frac{{\sqrt 2 }}{2}\).

Do đó, \(\left( {\overrightarrow x ,\,\overrightarrow y } \right) = 45^\circ \).


Câu 20:

Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x – y + 3 = 0. Vectơ pháp tuyến của đường thẳng d là
Xem đáp án

Đáp án: C


Câu 22:

Phương trình tham số của đường thẳng ∆ đi qua điểm A(3; 1) và nhận \(\overrightarrow u  = \left( {3;\,\, - 1} \right)\) làm vectơ chỉ phương là
Xem đáp án
Đáp án: A

Câu 23:

Cho đường thẳng d có phương trình tham số \(\left\{ \begin{array}{l}x = 5 + t\\y = - 9 - 2t\end{array} \right.\). Phương trình tổng quát của đường thẳng d là
Xem đáp án

Đáp án đúng là: A

Đường thẳng d: \(\left\{ \begin{array}{l}x = 5 + t\\y = - 9 - 2t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = x - 5\\y = - 9 - 2t\end{array} \right.\) y = – 9 – 2 . (x – 5) 2x + y – 1 = 0.


Câu 24:

Khoảng cách từ điểm A(1; 1) đến đường thẳng d: 5x – 12y – 6 = 0 là
Xem đáp án

Đáp án đúng là: D

Khoảng cách từ điểm A(1; 1) đến d: 5x – 12y – 6 = 0 là

\(d\left( {A,\,\,d} \right) = \frac{{\left| {5 \cdot 1 - 12 \cdot 1 - 6} \right|}}{{\sqrt {{5^2} + {{\left( { - 12} \right)}^2}} }} = 1\).


Câu 25:

Góc giữa hai đường thẳng a: \(\sqrt 3 \)x – y + 7 = 0 và b: x – \(\sqrt 3 \)y – 2 = 0 là
Xem đáp án

Đáp án đúng là: A

Đường thẳng a có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {\sqrt 3 ;\,\, - 1} \right)\);

Đường thẳng b có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {1;\, - \sqrt 3 } \right)\).

Áp dụng công thức tính góc giữa hai đường thẳng ta có:

\(\cos \left( {a,\,\,b} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ,\,\,\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_1}} \cdot \overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right| \cdot \left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {\sqrt 3 \cdot 1 + \left( { - 1} \right) \cdot \left( { - \sqrt 3 } \right)} \right|}}{{\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {{\left( { - 1} \right)}^2}} \cdot \sqrt {{1^2} + {{\left( { - \sqrt 3 } \right)}^2}} }} = \frac{{\sqrt 3 }}{2}\).

Suy ra góc giữa hai đường thẳng bằng 30°.


Câu 26:

Phương trình nào sau đây là phương trình đường tròn?
Xem đáp án

Đáp án: D


Câu 28:

Phương trình nào sau đây là phương trình của đường tròn tâm I(– 1; 2), có bán kính bằng 5?
Xem đáp án
Đáp án: C

Câu 29:

Phương trình đường tròn có tâm I(3; 4) tiếp xúc với đường thẳng ∆: 3x + 4y – 10 = 0 là
Xem đáp án

Đáp án đúng là: A

Đường tròn có tâm I(3; 4) tiếp xúc với đường thẳng ∆: 3x + 4y – 10 = 0 nên bán kính đường tròn chính là khoảng cách từ tâm I đến đường thẳng ∆.

Ta có: R = d(I, ∆) = \(\frac{{\left| {3 \cdot 3 + 4 \cdot 4 - 10} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 3\).

Vậy phương trình đường tròn cần tìm là: (x – 3)2 + (y – 4)2 = 9.


Câu 30:

Trong mặt phẳng tọa độ, cho đường tròn (C): (x – 2)2 + (y + 2)2 = 5. Tiếp tuyến tại điểm M(1; 0) thuộc đường tròn (C) có phương trình là
Xem đáp án

Đáp án đúng là: D

Đường tròn (C) có tâm là I(2; – 2). Tiếp tuyến của (C) tại M(1; 0) có vectơ pháp tuyến \(\overrightarrow {MI} = \left( {1;\, - 2} \right)\), nên có phương trình

1(x – 1) – 2(y – 0) = 0 hay x – 2y – 1 = 0.  


Câu 31:

Trong mặt phẳng tọa độ Oxy, phương trình nào dưới đây là phương trình chính tắc của một elip?
Xem đáp án

Đáp án: D


Câu 32:

Trong mặt phẳng tọa độ Oxy, phương trình nào dưới đây là phương trình chính tắc của một hypebol?
Xem đáp án

Đáp án: A


Câu 33:

Phương trình chính tắc của parabol đi qua điểm A(1; 2) là
Xem đáp án

Đáp án: A


Câu 34:

Trong mặt phẳng tọa độ Oxy, cho elip (E): \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\). Tiêu cự của (E) bằng
Xem đáp án

Đáp án đúng là: D

Từ phương trình (E) ta suy ra a = 5, b = 3, do đó \(c = \sqrt {{a^2} - {b^2}} = \sqrt {{5^2} - {3^2}} = 4\).

Tiêu cự của (E) là 2c = 8.


Câu 35:

Phương trình chính tắc của hypebol (H) có tâm sai bằng 2 và tiêu cự bằng 4 là
Xem đáp án

Đáp án đúng là: D

Xét hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\,\,\left( {a,\,b > 0} \right)\).

Từ giả thiết ta có: \(\left\{ \begin{array}{l}\frac{c}{a} = 2\\2c = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\c = 2\end{array} \right. \Rightarrow b = \sqrt {{2^2} - {1^2}} = \sqrt 3 \).

Vậy (H) có phương trình là: \(\frac{{{x^2}}}{{{1^2}}} - \frac{{{y^2}}}{{{{\left( {\sqrt 3 } \right)}^2}}} = 1\,\,\,hay\,\,\,{x^2} - \frac{{{y^2}}}{3} = 1\).


Câu 36:

Cho đường thẳng d1: 2x – y – 2 = 0; d2: x + y + 3 = 0 và điểm M(3; 0). Viết phương trình đường thẳng ∆ đi qua điểm M, cắt d1 và d2 lần lượt tại A và B sao cho M là trung điểm của đoạn AB.
Xem đáp án

Đáp án:

Gọi tọa độ các điểm A, B và M là A(xA; yA); B(xB; yB) và M(xM; yM).

Vì A thuộc d1 nên 2xA – yA – 2 = 0. Suy ra yA = 2xA – 2.

Vì B thuộc d2 nên xB + yB + 3 = 0. Suy ra yB = – xB – 3.

Do M là trung điểm của đoạn AB nên

\(\left\{ \begin{array}{l}{x_A} + {x_B} = 2{x_M}\\{y_A} + {y_B} = 2{y_M}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} + {x_B} = 6\\\left( {2{x_A} - 2} \right) + \left( { - {x_B} - 3} \right) = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_A} = \frac{{11}}{3}\\{y_A} = \frac{{16}}{3}\end{array} \right.\).

Suy ra \(A\left( {\frac{{11}}{3};\,\,\frac{{16}}{3}} \right)\).

Đường thẳng ∆ đi qua điểm A và điểm M.

Ta có: \(\overrightarrow {AM} = \left( { - \frac{2}{3};\,\, - \frac{{16}}{3}} \right)\)\( \Rightarrow \overrightarrow {{u_{AM}}} = \left( {1;\,\,8} \right) \Rightarrow \overrightarrow {{n_{AM}}} = \left( {8;\,\, - 1} \right)\).

Đường thẳng ∆ đi qua M(3; 0) và có một vectơ pháp tuyến là \(\overrightarrow {{n_{AM}}} \) nên có phương trình là

8(x – 3) – (y – 0) = 0 hay 8x – y – 24 = 0.


Câu 37:

Cho đường tròn (C): (x – 1)2 + (y – 2)2 = 4 và đường thẳng d: x – y – 1 = 0. Viết phương trình đường tròn (C') đối xứng của (C) qua d. Tìm tọa độ giao điểm của (C), (C').
Xem đáp án

Đáp án:

Media VietJack

(C) có tâm I(1; 2), bán kính R = 2.

Phương trình đường thẳng ∆ đi qua I, vuông góc với d có dạng x + y + m = 0.

I (1; 2) ∆, suy ra 1 + 2 + m = 0 m = – 3.

Do đó, phương trình đường thẳng ∆: x + y – 3 = 0.

Gọi H là giao điểm của ∆ và d. Tọa độ của H là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}{\rm{x}} + {\rm{y}} - 3 = 0\\{\rm{x}} - {\rm{y}} - 1 = 0\end{array} \right.\]

Từ đó tìm được H(2; 1).

Chứng minh được H là trung điểm của II' với I' là tâm của (C'). Suy ra I'(3; 0)

(C), (C') đối xứng nhau qua d nên R = R'.

Vậy phương trình (C'): (x – 3)2 + y2 = 4.

Tọa độ giao điểm của (C), (C') là nghiệm của hệ phương trình:

\[\left\{ \begin{array}{l}{\left( {{\rm{x}} - 1} \right)^2} + {\left( {{\rm{y}} - 2} \right)^2} = 4\\{\left( {{\rm{x}} - 3} \right)^2} + {y^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {{\rm{x}} - 1} \right)^2} + {\left( {{\rm{y}} - 2} \right)^2} = 4\\{\rm{x}} - {\rm{y}} - 1 = 0\end{array} \right.\]

\[ \Leftrightarrow \left[ \begin{array}{l}{{\rm{x}}_{\rm{1}}} = 1 \Rightarrow {{\rm{y}}_{\rm{1}}} = 0\\{{\rm{x}}_{\rm{2}}} = 3 \Rightarrow {{\rm{y}}_2} = 2\end{array} \right. \Rightarrow {\rm{A}}\left( {1;0} \right),\,\,{\rm{B}}\left( {3;2} \right)\] là giao điểm của (C), (C').


Bắt đầu thi ngay