IMG-LOGO
Trang chủ Lớp 10 Toán Trắc nghiệm Toán 10 Bài 2. Tập hợp và các phép toán trên tập hợp có đáp án

Trắc nghiệm Toán 10 Bài 2. Tập hợp và các phép toán trên tập hợp có đáp án

Trắc nghiệm Toán 10 Bài 2. Tập hợp và các phép toán trên tập hợp có đáp án

  • 1196 lượt thi

  • 15 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

Số tập con của tập A = {1; 2; 3}

Xem đáp án

Đáp án đúng là: A

Các tập con gồm {1}; {2}; {3}; {1; 2}; {1;3}; {2; 3}; {1; 2; 3}; \(\emptyset \).


Câu 2:

Hãy liệt kê các phần tử của tập hợp \(X = \,{\rm{\{ }}x \in \mathbb{R},\,{x^2} + x + 1 = 0\} \)

Xem đáp án

Đáp án đúng là: A

Phương trình x2 + x + 1 = 0 vô nghiệm nên tập X không có phần tử nào.

Vậy tập X = \(\emptyset \).


Câu 3:

Số tập con có 2 phần tử của tập M = {1; 2; 3; 4; 5; 6}

Xem đáp án

Đáp án đúng là: A

Tập con có 2 phần tử của tập M gồm: {1; 2}; {1; 3}; {1; 4}; {1; 5}; {1;6}; {2; 3}; {2; 4}; {2; 5}; {2; 6}; {3; 4}; {3; 5}; {3; 6}; {4; 5}; {4; 6}; {5; 6}.

Vậy tập M có 15 tập con có 2 phần tử.


Câu 4:

Cho hai tập hợp A = {0; 2; 3; 5} và B = {2; 7}. Khi đó \[{\rm{A}} \cap {\rm{B}}\]

Xem đáp án

Đáp án đúng là: B

Vì phần tử 2 vừa thuộc A vừa thuộc B nên \[{\rm{A}} \cap {\rm{B}} = \left\{ 2 \right\}\].


Câu 5:

Cho A = {0; 1; 2; 3; 4}; B = {2; 3; 4; 5; 6}. Tìm tập \(\left( {{\rm{A}}\backslash {\rm{B}}} \right) \cup \left( {{\rm{B}}\backslash {\rm{A}}} \right)\)

Xem đáp án

Đáp án đúng là: D

Ta có tập hợp A\B là tập các phần tử thuộc tập A nhưng không thuộc tập B nên \(\left( {{\rm{A}}\backslash {\rm{B}}} \right) = {\rm{\{ 0;}}\,{\rm{1\} }}\).

Tập hợp B\A là tập các phần tử thuộc tập B nhưng không thuộc tập A nên \(\left( {{\rm{B}}\backslash {\rm{A}}} \right) = {\rm{\{ }}5;\,6\} \).

\( \Rightarrow \left( {{\rm{A}}\backslash {\rm{B}}} \right) \cup \left( {{\rm{B}}\backslash {\rm{A}}} \right) = \left\{ {0;\,1;\,5;\,6} \right\}\).


Câu 6:

Số phần tử của tập hợp \(A = {\rm{\{ }}{k^2} + 1|k \in \mathbb{Z},\,\left| k \right| \le 2\} \)

Xem đáp án

Đáp án đúng là: C

\(A = {\rm{\{ }}{k^2} + 1|k \in \mathbb{Z},\,\left| k \right| \le 2\} \) Ta có \(k \in \mathbb{Z},\,\left| k \right| \le 2\) \[ \Leftrightarrow \] 2 ≤ k ≤ 2

Ta có bảng sau:

k

-2

-1

0

1

2

k2 + 1

5

2

1

2

5

Vậy tập A có 3 phần tử A = {1; 2; 5}


Câu 7:

Một lớp học có 16 học sinh học giỏi môn Toán; 12 học sinh học giỏi môn Văn; 8 học sinh vừa học giỏi môn Toán và Văn; 19 học sinh không học giỏi cả hai môn Toán và Văn. Hỏi lớp học có bao nhiêu học sinh?

Xem đáp án

Đáp án đúng là: C

Gọi A là tập hợp gồm các học sinh trong lớp; B là tập số học sinh giỏi Toán; C là tập số học sinh giỏi Văn; D là tập số học sinh không giỏi cả 2 môn Toán và Văn.

Khi đó n(B) = 16, n(C) = 12, n(BC) = 8, n(D) = 19.

Số học sinh trong lớp giỏi ít nhất một trong hai môn Toán hoặc Văn là:

n(BC) = n(B) + n(C) - n(BC) = 16 + 12 – 8 = 20.

Ta có A = \((B \cup C) \cup D\)

Số học sinh trong lớp là: n(A) = n(BC) + n(D) = 20 + 19 = 39 (học sinh).

Được thể hiện trong biểu đồ Ven như sau:

Một lớp học có 16 học sinh học giỏi môn Toán; 12 học sinh học giỏi môn Văn (ảnh 1)

Câu 8:

Cho A = {a; b; c}; B = {b; c; d}; C = {a; b; c; d; e}. Khẳng định nào sau đây sai

Xem đáp án

Đáp án đúng là: A

- Đáp án A: Ta có \(A \cup B = {\rm{\{ }}a;b;c;d{\rm{\} }}\)\( \Rightarrow (A \cup B) \cap C = {\rm{\{ }}a;b;c;d{\rm{\} }}\)

\(A \cap B = {\rm{\{ }}b;c{\rm{\} }}\)\( \Rightarrow (A \cap B) \cup C = {\rm{\{ }}a;b;c;d;e{\rm{\} }}\)

Vậy \(\left( {{\rm{A}} \cup {\rm{B}}} \right) \cap {\rm{C}} \ne \left( {{\rm{A}} \cap {\rm{B}}} \right) \cup {\rm{C}}\)

Đáp án A sai.

- Đáp án B: Ta có \({\rm{B}} \cap {\rm{C}} = \left\{ {{\rm{b}};c;{\rm{d}}} \right\}\) \( \Rightarrow {\rm{A}} \cup \left( {{\rm{B}} \cap {\rm{C}}} \right) = \left\{ {{\rm{a}};{\rm{b}};{\rm{c}};{\rm{d}}} \right\}\);

\({\rm{A}} \cup {\rm{B}} = \left\{ {{\rm{a}};{\rm{b}};{\rm{c}};{\rm{d}}} \right\}\); \({\rm{A}} \cup {\rm{C}} = \left\{ {{\rm{a}};{\rm{b}};{\rm{c}};{\rm{d}};{\rm{e}}} \right\}\) \( \Rightarrow \left( {{\rm{A}} \cup {\rm{B}}} \right) \cap \left( {{\rm{A}} \cup {\rm{C}}} \right) = \left\{ {{\rm{a}};{\rm{b}};{\rm{c}};{\rm{d}}} \right\}\)

Vậy \({\rm{A}} \cup \left( {{\rm{B}} \cap {\rm{C}}} \right) = \left( {{\rm{A}} \cup {\rm{B}}} \right) \cap \left( {{\rm{A}} \cup {\rm{C}}} \right)\)

Đáp án B đúng.

- Đáp án C: Ta có \[{\rm{B}} \cap {\rm{C}}\, = {\rm{\{ }}b;c;d{\rm{\} }}\]\( \Rightarrow {\rm{A}} \cup \left( {{\rm{B}} \cap {\rm{C}}} \right) = \left\{ {{\rm{a}};{\rm{b}};{\rm{c}};{\rm{d}}} \right\}\)

\(A \cup B = {\rm{\{ }}a;b;c;d{\rm{\} }}\)\( \Rightarrow ({\rm{A}} \cup B) \cap C = \left\{ {{\rm{a}};{\rm{b}};{\rm{c}};{\rm{d}}} \right\}\)

Vậy \[{\rm{A}} \cup {\rm{(B}} \cap {\rm{C)}}\, = \,({\rm{A}} \cup {\rm{B)}} \cap {\rm{C}}\]

Đáp án C đúng.

- Đáp án D: Ta có \[{\rm{A}} \cup {\rm{B = \{ }}a;b;c;d{\rm{\} }}\]\( \Rightarrow (A \cup B) \cap C = {\rm{\{ }}a;b;c;d{\rm{\} }}\)

\[\,{\rm{A}} \cup {\rm{B = \{ }}a;b;c;d{\rm{\} }}\];\[\,{\rm{A}} \cup C{\rm{ = \{ }}a;b;c;d;e{\rm{\} }}\]\( \Rightarrow (A \cup B) \cap (A \cup C) = {\rm{\{ }}a;b;c;d{\rm{\} }}\)

Vậy \[{\rm{(A}} \cup {\rm{B)}} \cap {\rm{C}}\,{\rm{ = }}\,{\rm{(A}} \cup {\rm{B)}} \cap {\rm{(A}} \cup {\rm{C)}}\].

Đáp án D đúng.

Câu 9:

Cho A = {a; b; m; n}; B = {b; c; m}; C = {a; m; n}. Hãy chọn khẳng định đúng.

Xem đáp án

Đáp án đúng là: A

A \ B = {a; n}; \({\rm{A}} \cap {\rm{C}} = \left\{ {{\rm{a}};{\rm{m}};{\rm{n}}} \right\}\) \( \Rightarrow \left( {{\rm{A}}\backslash {\rm{B}}} \right) \cup \left( {{\rm{A}} \cap {\rm{C}}} \right) = \left\{ {{\rm{a}};{\rm{m}};{\rm{n}}} \right\}\).


Câu 10:

Cho hai tập \({\rm{A = \{ }}x \in \mathbb{R},\,x + 3 < 4 + 2x\)} \({\rm{B = \{ }}x \in \mathbb{R},\,5x - 3 < 4x - 1\} \). Hỏi các số tự nhiên thuộc cả hai tập A và B là những số nào?

Xem đáp án

Đáp án đúng là: C

\({\rm{A = \{ }}x \in \mathbb{R},\,x > - 1\} \); \({\rm{B = \{ }}x \in \mathbb{R},\,x < 2\} \). Tập cần tìm là \[C = A \cap B\]. Suy ra \[C = {\rm{\{ }}x \in \mathbb{N}, - 1 < x < 2\} \]

Vậy số cần tìm là: 0 và 1.


Câu 11:

Cho \({\rm{A = \{ }}x \in \mathbb{N},\,(2x - {x^2})(2{x^2} - 3x - 2) = 0\} \) \({\rm{B = \{ n}} \in \mathbb{N},\,3 < {n^2} < 30\} \). Tìm kết quả phép toán \[{\rm{A}} \cap {\rm{B}}\].

Xem đáp án

Đáp án đúng là: B

Xét tập A ta có

\((2x - {x^2})(2{x^2} - 3x - 2) = 0 \Leftrightarrow \left[ \begin{array}{l}2x - {x^2} = 0\\2{x^2} - 3x - 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\\\left[ \begin{array}{l}x = 2\\x = - \frac{1}{2}\end{array} \right.\end{array} \right.\)

\(x \in \mathbb{N}\) nên A = {0; 2};

Xét tập B ta có 3 < 22 < 30; 3 < 32 < 30; 3 < 42 < 30; 3 < 52 < 30

Vậy tập B = {2; 3; 4; 5}

Ta có {2} vừa thuộc A vừa thuộc B nên \[{\rm{A}} \cap {\rm{B}} = \left\{ 2 \right\}\].


Câu 12:

Cho hai tập A = [–1 ; 3); B = [a; a + 3]. Với giá trị nào của a thì \[{\rm{A}} \cup {\rm{B}} = \emptyset \].

Xem đáp án

Đáp án đúng là: A

\[{\rm{A}} \cap {\rm{B}} = \emptyset \Leftrightarrow \left[ \begin{array}{l}{\rm{a}} \ge 3\\{\rm{a}} + 3 < - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{\rm{a}} \ge 3\\{\rm{a}} < - 4\end{array} \right.\]


Câu 13:

Cho hai tập A = [0; 5]; B = (2a; 3a + 1), a > –1. Với giá trị nào của a thì \[{\rm{A}} \cap {\rm{B}} \ne \emptyset \].

Xem đáp án

Đáp án đúng là: C

Ta tìm \[{\rm{A}} \cap {\rm{B}} = \emptyset \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}2{\rm{a}} \ge 5\\3{\rm{a}} + 1 < 0\end{array} \right.\\{\rm{a}} > - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}{\rm{a}} \ge \frac{5}{2}\\{\rm{a}} < - \frac{1}{3}\end{array} \right.\\{\rm{a}} > - 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}{\rm{a}} \ge \frac{5}{2}\\ - 1 < {\rm{a}} < - \frac{1}{3}\end{array} \right.\] \[ \Rightarrow {\rm{A}} \cap {\rm{B}} \ne \emptyset \Leftrightarrow - \frac{1}{3} \le {\rm{a}} < \frac{5}{2}\]


Câu 14:

Một lớp có 45 học sinh. Mỗi em đều đăng ký chơi ít nhất một trong hai môn: bóng đá và bóng chuyền. Có 35 em đăng ký môn bóng đá, 15 em đăng ký môn bóng chuyền. Hỏi có bao nhiêu em đăng ký chơi cả 2 môn?

Xem đáp án

Đáp án đúng là: A

Gọi A là tập hợp các học sinh đăng ký chơi bóng đá, B là tập hợp các học sinh đăng ký chơi bóng chuyền. Dựa vào biểu đồ Ven, ta có: số học sinh đăng ký cả 2 môn là \[\left| {{\rm{A}} \cap B} \right| = \left| A \right| + \left| B \right| - \left| {A \cup B} \right| = 35 + 15 - 45 = 5\].

Một lớp có 45 học sinh. Mỗi em đều đăng ký chơi ít nhất một trong hai môn (ảnh 1)

Câu 15:

Lớp 10A có 45 học sinh, trong đó có 15 học sinh được xếp loại học lực giỏi, 20 học sinh được xếp loại hạnh kiểm tốt, 10 em vừa xếp loại học lực giỏi, vừa có hạnh kiểm tốt. Hỏi có bao nhiêu học sinh xếp loại học lực giỏi hoặc có hạnh kiểm tốt?

Xem đáp án

Đáp án đúng là: A

Gọi A là tập hợp học sinh lớp 10A; B là tập học sinh được xếp loại học lực giỏi; C là tập học sinh được xếp loại hạnh kiểm tốt. Khi đó tập hợp cần tìm là tập \[{\rm{B}} \cup {\rm{C}}\]. Tập này có 25 học sinh. Được thể hiện trong biểu đồ Ven như sau:

Lớp 10A có 45 học sinh, trong đó có 15 học sinh được xếp loại học lực giỏi (ảnh 1)

Bắt đầu thi ngay


Có thể bạn quan tâm


Các bài thi hot trong chương