Trắc nghiệm Toán 10 Bài tập cuối chương 6 có đáp án
-
265 lượt thi
-
16 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
Cho tam giác ABC có độ dài ba cạnh:
a = 13cm ± 0,2cm; b = 11, 2cm ± 0,2cm; c = 7cm ± 0,1cm. Tính chu vi P của tam giác đã cho.
Hướng dẫn giải
Đáp án đúng là: C
Chu vi tam giác là:
P = a + b + c = (13 + 11, 2 + 7) ± (0,2 + 0,2 + 0,1) = 31, 2 ± 0,5.
Câu 2:
Số áo bán được trong một quý ở cửa hàng bán áo sơ mi được thống kê như sau:
Cỡ áo |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
Tần số (số áo bán được) |
13 |
45 |
126 |
125 |
110 |
40 |
12 |
Giá trị mốt của bảng phân bố tần số trên bằng
Hướng dẫn giải
Đáp án đúng là: A
Theo bảng tần số trên thì cỡ áo 38 bán được với số lượng nhiều nhất trong một quý . Nên mốt của mẫu số liệu là 38
Câu 3:
Hướng dẫn giải
Đáp án đúng là: C
Sắp xếp các số liệu theo thứ tự tăng dần ta được: 2,5; 3,0; 6,5; 6,7; 6,9; 7,2; 8,4
Ta thấy bảng số liệu trên có 7 giá trị nên trung vị là số liệu đứng ở vị trí 4
Vậy trung vị Me = 6,7.
Câu 4:
Kết quả kiểm tra 15 phút môn toán của 100 học sinh được trình bày ở bảng sau:
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Số học sinh |
3 |
5 |
11 |
17 |
30 |
19 |
10 |
5 |
Điểm trung bình môn Toán của các học sinh nói trên là:
Hướng dẫn giải
Đáp án đúng là: A
\(\overline x = \frac{{3.3 + 4.5 + 5.11 + 6.17 + 7.30 + 8.19 + 9.10 + 10.5}}{{100}}\)= 6,88
Câu 5:
Kết quả kiểm tra 15 phút môn toán của 100 học sinh được trình bày ở bảng sau:
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Số học sinh |
3 |
5 |
11 |
17 |
30 |
19 |
10 |
5 |
Điểm trung bình môn Toán của các học sinh nói trên là:
Hướng dẫn giải
Đáp án đúng là: A
\(\overline x = \frac{{3.3 + 4.5 + 5.11 + 6.17 + 7.30 + 8.19 + 9.10 + 10.5}}{{100}}\)= 6,88
Câu 6:
Cho dãy số liệu thống kê:1; 2; 3; 4; 5; 6; 7. Phương sai của mẫu số liệu trên là
Hướng dẫn giải
Đáp án đúng là: D
Ta có: \(\overline x = \frac{{1 + 2 + 3 + 4 + 5 + 6 + 7}}{7} = 4\)
s2 = \(\frac{{{{(1 - 4)}^2} + {{(2 - 4)}^2} + {{(3 - 4)}^2} + {{(4 - 4)}^2} + {{(5 - 4)}^2} + {{(6 - 4)}^2} + {{(7 - 4)}^2}}}{7}\)= 4
Câu 7:
Hướng dẫn giải
Đáp án đúng là: D
Độ lệch chuẩn của số liệu thống kê có cùng đơn vị với đơn vị của các số liệu trong mẫu thống kê.
Câu 8:
Theo kết quả thống kê điểm thi giữa kì 2 môn toán khối 10 của một trường THPT , người ta tính được phương sai của mẫu số liệu đó là s2 = 0,64. Độ lệch chuẩn của mẫu số liệu đó bằng:
Hướng dẫn giải
Đáp án đúng là: C
Ta có s \(\sqrt {{s^2}} = \sqrt {0,64} \)= 0,8
Câu 9:
Biểu đồ sau thể hiện tổng nợ nước ngoài của nhóm nước đang phát triẻn trong giai đoạn 1990 đến 2004. Hãy tìm khoảng biến thiên của mẫu số liệu đó.
Hướng dẫn giải
Đáp án đúng là: B
Ta có: x max = 2724 và x min = 1310 ⇒ R = x max - x min = 2724 – 1310 = 1414.
Câu 10:
Gieo 1 con xúc xắc . Số phần tử của không gian mẫu là:
Hướng dẫn giải
Đáp án đúng là: B
Ω = {1; 2; 3; 4; 5; 6} ⇒ n(Ω) = 6
Câu 11:
Cho A và \(\overline A \) là hai biến cố đối nhau. Chọn câu đúng.
Hướng dẫn giải
Đáp án đúng là: C
Câu 12:
Một hộp có 5 viên bi đỏ và 9 viên bi xanh. Chọn ngẫu nhiên 2 viên bị.Xác suất để chọn được hai viên bi khác màu là:
Hướng dẫn giải
Đáp án đúng là: B
Ta có : Mỗi lần chọn 2 viên bi ngẫu nhiên từ 14 viên bi cho ta một tổ hợp chập 2 của 14 nên n(Ω) =\(C_{14}^2\) = 91
Gọi A là biến cố: “ Hai viên bi được chọn khác màu”
Việc chọn 2 viên bi từ hộp sao cho hai viên bi được chọn khác màu có thể xem là 1 công việc gồm 2 công đoạn:
+ Công đoạn 1: Chọn 1 viên bi màu đỏ có 5 cách
+ Công đoạn 2: Chọn 1 viên bi màu xanh có 9 cách
⇒n(A) = 5.9 = 45
P(A) = \(\frac{{n(A)}}{{n(\Omega )}}\) = \(\frac{{45}}{{91}}\)
Câu 13:
Trong một kì thi vấn đáp thí sinh đứng trước ban giám khảo chọn 3 phiếu câu hỏi từ một thùng phiếu gồm 50 câu hỏi, trong đó có 4 cặp phiếu câu hỏi mà mỗi cặp phiếu có nội dung khác nhau từng đôi một và trong mỗi một cặp phiếu có nội dung giống nhau. Tính xác suất để thí sinh chọn được 3 phiếu câu hỏi có nội dung khác nhau.
Hướng dẫn giải
Đáp án đúng là: D
Ta có : Mỗi lần chọn 3 câu hỏi ngẫu nhiên từ 50 câu hỏi cho ta một tổ hợp chập 3 của 50 nên n(Ω) =\(C_{50}^3\)
Gọi F là biến cố:” thí sinh chọn được 3 phiếu câu hỏi có nội dung khác nhau”
⇒ \(\overline F \) là biến cố” thí sinh chọn được 3 phiếu câu hỏi trong đó có 1 cặp câu hỏi có nội dung giống nhau”
Việc thí sinh chọn được 3 phiếu câu hỏi trong đó có 1 cặp câu hỏi có nội dung giống nhau có thể xem là một công việc có 2 công đoạn:
- Công đoạn 1: Chọn 1 cặp trong 4 cặp câu hỏi giống nhau có \(C_4^1\)= 4 cách
- Công đoạn 2: Chọn 1 phiếu câu hỏi trong 48 phiếu còn lại: có 48 cách chọn
Do đó, n(\(\overline F \)) = 4.48 = 192 cách chọn
⇒ P(\(\overline F \)) = \(\frac{{n(\overline F )}}{{n(\Omega )}}\) = \(\frac{{192}}{{19600}}\) = \(\frac{{12}}{{1225}}\)
⇒ P(F) = 1 - P(\(\overline F \)) = 1 - \(\frac{{12}}{{1225}}\)= \(\frac{{1213}}{{1225}}\)
Câu 14:
Một hộp có 5 viên bi đỏ, 3 viên bi vàng và 4 viên bi xanh. Chọn ngẫu nhiên từ hộp 4 viên bi, tính xác suất để 4 viên bi được chọn có số bi đỏ lớn hơn số bi vàng và nhất thiết phải có mặt bi xanh.
Hướng dẫn giải
Đáp án đúng là: C
Ta có : Mỗi lần chọn 4 viên bi ngẫu nhiên từ 12 viên bi cho ta một tổ hợp chập 4 của 12 nên n(Ω) =\(C_{12}^4\) = 495
Gọi D là biến cố :” 4 viên bi được chọn có số bi đỏ lớn hơn số bi vàng và nhất thiết phải có mặt bi xanh”
- Trường hợp 1: Chọn 1 bi đỏ và 3 bi xanh có \(C_5^1.C_4^3\)= 20 cách
- Trường hợp 2: Chọn 2 bi đỏ và 2 bi xanh có \(C_5^2.C_4^2\)= 60 cách
- Trường hợp 3: Chọn 3 bi đỏ và 1 bi xanh có \(C_5^3.C_4^1\)= 40 cách
- Trường hợp 4: Chọn 2 bi đỏ, 1 bi vàng và 1 bi xanh có \(C_5^2.C_3^1.C_4^1\)= 120 cách
⇒n(D) = 20 + 60 + 40 + 120 = 240
Vậy P(D) = \(\frac{{n(D)}}{{n(\Omega )}}\) = \(\frac{{240}}{{495}}\) = \(\frac{{16}}{{33}}\)Câu 15:
Cho tập hợp A = {2; 3; 4; 5; 6; 7; 8}. Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập thành từ cách chữ số của tập A. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn mà trong mỗi số luôn có mặt hai chữ số chẵn và hai chữ số lẻ.
Hướng dẫn giải
Đáp án đúng là: D
Ta có : n(Ω) =\(A_7^4\) = 840
Gọi E là biến cố: “ Số được chọn luôn có mặt hai chữ số chẵn và hai chữ số lẻ”
Việc số được chọn luôn có mặt hai chữ số chẵn và hai chữ số lẻ là một công việc gồm 3 công đoạn:
+ Công đoạn 1: Chọn 2 chữ số chẵn từ các chữ số 2; 4; 6; 8 có \(C_4^2\)= 6 cách
+ Công đoạn 2: Chọn 2 chữ số lẻ từ các chữ số 3; 5; 7 có \(C_3^2\)= 3 cách
+ Công đoạn 3: Từ 4 chữ số được chọn ta lập số có 4 chữ số khác nhau, số cách lập tương ứng với một hoán vị của 4 , do đó ta có 4! = 24 cách
⇒ n(E) = 24.6.3 = 432
⇒P(E) = \(\frac{{n(E)}}{{n(\Omega )}}\) = \(\frac{{432}}{{840}}\) = \(\frac{{18}}{{35}}\)
Câu 16:
Một Chi Đoàn có 3 Đoàn viên nữ và một số Đoàn viên nam.Cần lập một đội thanh niên tình nguyện (TNTN) gồm 4 người. Gọi A là biến cố :” 4 người được chọn có 3 nữ” và B là biến cố :” 4 người được chọn toàn nam” . Biết rằng P(A) = \(\frac{2}{5}\)P(B). Hỏi Chi Đoàn có bao nhiêu Đoàn viên?
Hướng dẫn giải
Đáp án đúng là: A
Gọi số Đoàn viên trong Chi đoàn là n (n ∈ℕ*, n ≥ 7)
⇒Số Đoàn viên nam trong Chi Đoàn là n – 3
Ta có : Mỗi lần chọn 4 Đoàn viên ngẫu nhiên từ n Đoàn viên cho ta một tổ hợp chập 4 của n nên n(Ω) =\(C_n^4\)
* Để lập đội TNTN trong đó có 3 nữ có thể xem là một công việc gồm 2 công đoạn:
+ Công đoạn 1: Chọn 3 nữ có 1 cách chọn
+ Công đoạn 2: Chọn 1 nam có n - 3 cách chọn
⇒n(A) = 1.(n - 3) = n - 3
⇒P(A) = \(\frac{{n(A)}}{{n(\Omega )}}\) = \(\frac{{n - 3}}{{C_n^4}}\)
* Để lập đội TNTN có 4 Đoàn viên là nam có n(B) = \(C_{n - 3}^4\)
⇒P(B) = \(\frac{{n(B)}}{{n(\Omega )}}\) = \(\frac{{C_{n - 3}^4}}{{C_n^4}}\)
Theo giả thiết ta có: P(A) = \(\frac{2}{5}\)P(B)
hay \(\frac{{n - 3}}{{C_n^4}}\)= \(\frac{2}{5}\).\(\frac{{C_{n - 3}^4}}{{C_n^4}}\)
⇒ n – 3 = \(\frac{2}{5}\).\(C_{n - 3}^4\)
Mà \(C_{n - 3}^4\)=\(\frac{{(n - 3)!}}{{4!(n - 7)!}}\)= \(\frac{{(n - 7)!(n - 6)(n - 5)(n - 4)(n - 3)}}{{24(n - 7)!}}\)
= \[\frac{{(n - 6)(n - 5)(n - 4)(n - 3)}}{{24}}\]
⇒ n – 3 = \(\frac{2}{5}\).\[\frac{{(n - 6)(n - 5)(n - 4)(n - 3)}}{{24}}\]
⇒(n – 6)(n – 5)(n – 4) = 60
⇒ n3 – 15n2 + 74n – 180 = 0
⇒ n = 9
Vậy Chi Đoàn có 9 Đoàn viên