IMG-LOGO

Tổng hợp đề thi chính thức vào 10 môn Toán năm 2019 có đáp án (Phần 1)- Đề 16

  • 3384 lượt thi

  • 9 câu hỏi

  • 45 phút

Danh sách câu hỏi

Câu 1:

1)    Rút gọn biểu thức A=326.3+2211

Xem đáp án

1)A=326.3+2211=16.218+2211=4232+2=22

Vậy A=22


Câu 2:

Giải phương trình: x22x=0

Xem đáp án

2) x22x=0xx2=0x=0x2=0x=0x=2

Vậy phương trình đã cho có tập nghiệm S=0;2


Câu 3:

Xác định hệ số a của hàm số y=ax2, biết đồ thị hàm số đi qua điểm A3;1

Xem đáp án

Đồ thị hàm số y=ax2 đi qua điểm A3;1nên thay tọa độ điểm A vào công thức hàm số ta được: 1=a.32a=19

Vậy a=19


Câu 4:

Cho phương trình: x22mnx+2m+3n1=0(1) (m,n là tham số)

1)    Với n= 0 chứng minh rằng phương trình (1) luôn có nghiệm với mọi giá trị của m

Xem đáp án

Với n= 0 ta có phương trình 1x22mx+2m1=0

Phương trình có Δ'=m22m+1=m120m

Vậy với m  thì phương trình (1) luôn có nghiệm với mọi m


Câu 5:

a, Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình y=x+22. Gọi A,B lần lượt là giao điểm của d với trục hoành và trục tung; H là trung điểm của đoạn thẳng AB Tính độ dài đoạn thẳng OH (đơn vi trên các trục tọa độ là xentimet).

Xem đáp án

a, Cho d:y=x+22

Ta có: dOx=AAxA;0xA+22=0xA=22A22;0OA=22

dOy=BB0;yB0+22=yByB=22B0;22OB=22

ΔOAB vuông cân tại O (do OA=OB=22)mà OH là đường trung tuyến nên OH cũng là đường cao

a, Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình y=-x + căn 2/ 2 (ảnh 1)
Sử dụng hệ thức lượng trong tam giác ΔOAB vuông tại O có đường cao OH ta có:
1OH2=1OA2+1OB2=1222+1222=2+2=4OH2=14OH=0,5cm

Vậy OH=0,5cm


Câu 6:

b, Một cốc nước dạng hình trụ có chiều cao là 12cm bán kính đáy là 2cm lượng nước trong cốc cao 8cm Người ta thả vào cốc nước 6 viên bi hình cầu có cùng bán kính 1cm và ngập hoàn toàn trong nước làm nước trong cốc dâng lên.Hỏi sau khi thả viên bi vào thì mực nước trong cốc cách miệng cốc bao nhiêu xentimet? (Giả sử độ dài của cốc là không đáng kể)

Xem đáp án

b, Thể tích dâng lên bằng thể tích 6 viên bi thả vào cốc

Thể tích nước trong cốc ban đầu: V1=π.22.8=32πcm3

Thể tích của 6 viên bi được thả vào cốc là: V2=6.43π.13=8πcm3

Thể tích sau khi được thả thêm 6 viên bi là: V=V1+V2=32π+8π=40πcm3

Chiều cao mực nước trong cốc lúc này là: h=VπR2=40ππ.22=10(cm)

Vậy sau khi thả 6 viên bi vào cốc thì mực nước cách cốc là: 1210=2(cm)


Câu 8:

     c, Chứng minh CN = OP 

Xem đáp án

c, Ta có: ΔMNE là tam giác đều (cmt)

ENM^=600=ONC^(hai góc đối đỉnh)

OCN^=900ONC^=900600=300

ONMPlà tứ giác nội tiếp (cmt)OPN^=OMN^=300 (hai góc nội tiếp cùng chắn cung ON)

Ta có: OCAB=ONPAB=NOC=NPOCPNlà hình thang

Mà OCN^=OPN^=300(cmt)

Lại có hai góc này là hai góc đối nhau nên OCNP là hình bình hành

OC=NP(dfcm)


Câu 9:

Cho ba số thực dương x,y,z thỏa mãn: x+2y+3z=2. 

Tìm giá trị lớn nhất của biểu thức: S=xyxy+3z+3yz3yz+x+3xz3xz+4y

Xem đáp án

Do x+2y+3z=2 nên x=22y3z2y=2x3z3z=2x2y, Khi đó:

xy+3z=xy+2x2y=xyx2y2=xy12y1=x2y13yz+x=3yz+22y3z=3yz3z2y2=y13z23xz+4y=3xz+22x3z=3xz6z2x4=3zx22x2=x23z2

Suy ra:
S=xyx2y1+3yzy13z2+3xzx23z2=x21y2y2x+2y13z3z21y+x23z3z2x12x21y+2y2x+122y23z+3z21y+12x23z+3z2x=12x21y+2y2x+2y23z+3z21y+x23z+3z2x=12x+3z21y+2y+3z2x+2y+x23z=1222y2(1y)+2x2x+23z23z=121+1+1=32

Hay S32MaxS=32

Dấu”=” xảy ra x21y=2y2x2y23z=3z21yx23z=3z2x2xx2=4y4y2=6z9z2và x+2y+3z=2


Bắt đầu thi ngay