Trắc nghiệm Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp (Nhận biết)
Trắc nghiệm Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp (Nhận biết)
-
881 lượt thi
-
12 câu hỏi
-
50 phút
Danh sách câu hỏi
Câu 1:
Phân tích đa thức x2 – 6x + 8 thành nhân tử ta được
Ta có x2 – 6x + 8 = x2 – 4x – 2x + 8 = x(x – 4) – 2(x – 4)
= (x – 4)(x – 2)
Đáp án cần chọn là: A
Câu 2:
Phân tích đa thức x2 – 7x + 10 thành nhân tử ta được
Ta có x2 – 7x + 10 = x2 – 2x – 5x + 10
= x(x – 2) – 5(x – 2) = (x – 5)(x – 2)
Đáp án cần chọn là: B
Câu 3:
Đa thức 25 – a2 + 2ab – b2 được phân tích thành
Ta có 25 – a2 + 2ab – b2 = 25 – (a2 – 2ab + b2)
= 52 – (a – b)2
= (5 + a – b)(5 – a + b)
Đáp án cần chọn là: D
Câu 4:
Phân tích đa thức m.n3 – 1 + m – n3 thành nhân tử, ta được:
m.n3 – 1 + m – n3
= (mn3 – n3) + (m -1)
= n3(m – 1) + (m – 1)
= (n3 + 1)(m - 1)
= (n + 1)(n2 – n + 1)(m – 1)
Đáp án cần chọn là: A
Câu 5:
Phân tích đa thức x4 + 64 thành hiệu hai bình phương, ta được
Ta có x4 + 64 = (x2)2 + 16x2 + 64 – 16x2
= (x2)2 + 2.8.x + 82 – (4x)2
= (x2 + 8)2 – (4x)2
Đáp án cần chọn là: C
Câu 6:
Phân tích đa thức x8 + 4 thành hiệu hai bình phương, ta được
Ta có x8 + 4 = (x4)2 + 4x4 + 4 – 4x4
= (x4 + 2)2 – (2x2)2
Đáp án cần chọn là: D
Câu 7:
Ta có x2 – 7xy + 10y2 = (x – 2y)(…). Biểu thức thích hợp điền vào dấu … là
Ta có x2 – 7xy + 10y2 = x2 – 2xy – 5xy + 10y2
= (x2 – 2xy) – (5xy – 10y2)
= x(x – 2y) – 5y(x – 2y)
= (x – 2y)(x – 5y)
Vậy ta cần điền x – 5y
Đáp án cần chọn là: B
Câu 8:
Điền vào chỗ trống 4x2 + 4x – y2 + 1 = (…)(2x + y + 1)
4x2 + 4x – y2 + 1 = ((2x)2 + 2.2x + 1) – y2
= (2x + 1)2 – y2 = (2x + 1 – y)(2x + 1 + y)
= (2x – y + 1)(2x + y + 1)
Vậy đa thức trong chỗ trống là 2x – y + 1
Đáp án cần chọn là: B
Câu 9:
Chọn câu sai
Ta có
+) 3x2 – 5x – 2 = 3x2 + x – 6x – 2 = x(3x + 1) – 2(3x + 1) = (x – 2)(3x + 1) nên A đúng.
+) x2 + 5x + 4 = x2 + x + 4x + 4 = x(x + 1) + 4(x + 1) = (x + 4)(x + 1) nên B đúng
+) x2 – 9x + 8 = x2 – x – 8x + 8 = x(x – 1) – 8(x – 1) = (x – 8)(x – 1) nên C sai
+) x2 + x – 6 = x2 + 3x – 2x – 6 = x(x + 3) – 2(x + 3) = (x – 2)(x + 3) nên D đúng
Đáp án cần chọn là: C
Câu 10:
Chọn câu đúng nhất
Ta có x3 + x2 – 4x – 4 = (x3 + x2) – (4x + 4)
= x2(x + 1) – 4(x + 1) = (x2 – 4)(x + 1)
= (x – 2)(x + 2)(x + 1) nên A đúng
x2 + 10x + 24 = x2 + 6x + 4x + 24
= x(x + 6) + 4(x + 6) = (x + 4)(x + 6) nên B đúng
Vậy cả A, B đều đúng.
Đáp án cần chọn là: D
Câu 11:
Chọn câu đúng
Ta có
+) x4 + 4x2 – 5 = x4 – x2 + 5x2 – 5 = x2(x2 – 1) + 5(x2 – 1) = (x2 + 5)(x2 – 1)
= (x2 + 5)(x – 1)(x + 1) nên A đúng
+) x2 + 5x + 4 = x2 + x + 4x + 4 = x(x + 1) + 4(x + 1) = (x + 4)(x + 1) nên B sai
+) x2 – 9x + 8 = x2 – x – 8x + 8 = x(x – 1) – 8(x – 1) = (x – 1)(x – 8) nên C sai
+) x2 + x – 6 = x2 – 2x + 3x – 6 = x(x – 2) + 3(x – 2) = (x – 2)(x + 3) nên D sai
Đáp án cần chọn là: A
Câu 12:
Chọn câu sai
Ta có
+) Đáp án A đúng vì:
16x3 – 54y3 = 2(8x3 – 27y3) = 2[(2x)3 – (3y)3]
= 2(2x – 3y)[(2x)2 + 2x.3y + (3y)2]
= 2(2x – 3y)(4x2 + 6xy + 9y2)
+) Đáp án B đúng vì:
x2 – 9 + (2x + 7)(3 – x) = (x2 – 9) + (2x + 7)(3 – x)
= (x – 3)(x + 3) – (2x + 7)(x – 3)
= (x – 3)(x + 3 – 2x – 7)
= (x – 3)(-x – 4)
+) Đáp án C đúng vì:
x4 – 4x3 + 4x2 = x2(x2 – 4x + 4)
= x2(x2 – 2.2.x + 22) = x2(x – 2)2.
+) Đáp án D sai vì:
4x3 – 4x2 – x + 1 = (4x3 – 4x2) – (x – 1)
= 4x2(x – 1) – (x – 1) = (4x2 – 1)(x – 1)
= ((2x)2 – 1)(x – 1) = (2x – 1)(2x + 1)(x – 1)
Đáp án cần chọn là: D