IMG-LOGO
Trang chủ Lớp 8 Toán Trắc nghiệm Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp (Nhận biết)

Trắc nghiệm Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp (Nhận biết)

Trắc nghiệm Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp (Nhận biết)

  • 881 lượt thi

  • 12 câu hỏi

  • 50 phút

Danh sách câu hỏi

Câu 1:

Phân tích đa thức x2 – 6x + 8 thành nhân tử ta được

Xem đáp án

Ta có x2 – 6x + 8 = x2 – 4x – 2x + 8 = x(x – 4) – 2(x – 4)

                    = (x – 4)(x – 2)

Đáp án cần chọn là: A


Câu 2:

Phân tích đa thức x2 – 7x + 10 thành nhân tử ta được

Xem đáp án

Ta có x2 – 7x + 10 = x2 – 2x – 5x + 10

          = x(x – 2) – 5(x – 2) = (x – 5)(x – 2)

Đáp án cần chọn là: B


Câu 3:

Đa thức 25 – a2 + 2ab – b2 được phân tích thành

Xem đáp án

Ta có 25 – a2 + 2ab – b2 = 25 – (a2 – 2ab + b2)

          = 52 – (a – b)2

          = (5 + a – b)(5 – a + b)

Đáp án cần chọn là: D


Câu 4:

Phân tích đa thức m.n3 – 1 + m – n3 thành nhân tử, ta được:

Xem đáp án

m.n3 – 1 + m – n3

= (mn3 – n3) + (m -1)

= n3(m – 1) + (m – 1)

= (n3 + 1)(m - 1)

= (n + 1)(n2 – n + 1)(m – 1)

Đáp án cần chọn là: A


Câu 5:

Phân tích đa thức x4 + 64 thành hiệu hai bình phương, ta được

Xem đáp án

Ta có x4 + 64 = (x2)2 + 16x2 + 64 – 16x2

          = (x2)2 + 2.8.x + 82 – (4x)2

          = (x2 + 8)2 – (4x)2

Đáp án cần chọn là: C


Câu 6:

Phân tích đa thức x8 + 4 thành hiệu hai bình phương, ta được

Xem đáp án

Ta có x8 + 4 = (x4)2 + 4x4 + 4 – 4x4

                    = (x4 + 2)2 – (2x2)2

Đáp án cần chọn là: D


Câu 7:

Ta có x2 – 7xy + 10y2 = (x – 2y)(…). Biểu thức thích hợp điền vào dấu … là

Xem đáp án

Ta có x2 – 7xy + 10y2 = x2 – 2xy – 5xy + 10y2

          = (x2 – 2xy) – (5xy – 10y2)

          = x(x – 2y) – 5y(x – 2y)

          = (x – 2y)(x – 5y)

Vậy ta cần điền x – 5y

Đáp án cần chọn là: B


Câu 8:

Điền vào chỗ trống 4x2 + 4x – y2 + 1 = (…)(2x + y + 1)

Xem đáp án

4x2 + 4x – y2 + 1 = ((2x)2 + 2.2x + 1) – y2

= (2x + 1)2 – y2 = (2x + 1 – y)(2x + 1 + y)

= (2x – y + 1)(2x + y + 1)

Vậy đa thức trong chỗ trống là 2x – y + 1

Đáp án cần chọn là: B


Câu 9:

Chọn câu sai

Xem đáp án

Ta có

+) 3x2 – 5x – 2 = 3x2 + x – 6x – 2 = x(3x + 1) – 2(3x + 1) = (x – 2)(3x + 1) nên A đúng.

+) x2 + 5x + 4 = x2 + x + 4x + 4 = x(x + 1) + 4(x + 1) = (x + 4)(x + 1) nên B đúng

+) x2 – 9x + 8 = x2 – x – 8x + 8 = x(x – 1) – 8(x – 1) = (x – 8)(x – 1) nên C sai

+) x2 + x – 6 = x2 + 3x – 2x – 6 = x(x + 3) – 2(x + 3) = (x – 2)(x + 3) nên D đúng

Đáp án cần chọn là: C


Câu 10:

Chọn câu đúng nhất

Xem đáp án

Ta có x3 + x2 – 4x – 4 = (x3 + x2) – (4x + 4)

= x2(x + 1) – 4(x + 1) = (x2 – 4)(x + 1)

= (x – 2)(x + 2)(x + 1) nên A đúng

x2 + 10x + 24 = x2 + 6x + 4x + 24

= x(x + 6) + 4(x + 6) = (x + 4)(x + 6) nên B đúng

Vậy cả A, B đều đúng.

Đáp án cần chọn là: D


Câu 11:

Chọn câu đúng

Xem đáp án

Ta có

+) x4 + 4x2 – 5 = x4 – x2 + 5x2 – 5 = x2(x2 – 1) + 5(x2 – 1) = (x2 + 5)(x2 – 1)

= (x2 + 5)(x – 1)(x + 1) nên A đúng

+) x2 + 5x + 4 = x2 + x + 4x + 4 = x(x + 1) + 4(x + 1) = (x + 4)(x + 1) nên B sai

+) x2 – 9x + 8 = x2 – x – 8x + 8 = x(x – 1) – 8(x – 1) = (x – 1)(x – 8) nên C sai

+) x2 + x – 6 = x2 – 2x + 3x – 6 = x(x – 2) + 3(x – 2) = (x – 2)(x + 3) nên D sai

Đáp án cần chọn là: A


Câu 12:

Chọn câu sai

Xem đáp án

Ta có

+) Đáp án A đúng vì:

16x3 – 54y3 = 2(8x3 – 27y3) = 2[(2x)3 – (3y)3]

= 2(2x – 3y)[(2x)2 + 2x.3y + (3y)2]

= 2(2x – 3y)(4x2 + 6xy + 9y2)

+) Đáp án B đúng vì:

x2 – 9 + (2x + 7)(3 – x) = (x2 – 9) + (2x + 7)(3 – x)

= (x – 3)(x + 3) – (2x + 7)(x – 3)

= (x – 3)(x + 3 – 2x – 7)

= (x – 3)(-x – 4)

+) Đáp án C đúng vì:

x4 – 4x3 + 4x2 = x2(x2 – 4x + 4)

= x2(x2 – 2.2.x + 22) = x2(x – 2)2.

+) Đáp án D sai vì:

4x3 – 4x2 – x + 1 = (4x3 – 4x2) – (x – 1)

= 4x2(x – 1) – (x – 1) = (4x2 – 1)(x – 1)

= ((2x)2 – 1)(x – 1) = (2x – 1)(2x + 1)(x – 1)

Đáp án cần chọn là: D


Bắt đầu thi ngay


Có thể bạn quan tâm


Các bài thi hot trong chương