Chủ nhật, 22/12/2024
IMG-LOGO
Trang chủ Lớp 8 Toán Trắc nghiệm Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp (Vận dụng)

Trắc nghiệm Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp (Vận dụng)

Trắc nghiệm Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp (Vận dụng)

  • 871 lượt thi

  • 11 câu hỏi

  • 50 phút

Danh sách câu hỏi

Câu 3:

Cho biểu thức D = a(b2 + c2) – b(c2 + a2) + c(a2 + b2) – 2abc. Phân tích D thành nhân tử và tính giá trị của C khi a = 99; b = -9; c = 1.

Xem đáp án

Ta có

D = a(b2 + c2) – b(c2 + a2) + c(a2 + b2) – 2abc

= ab2 + ac2 – bc2 – ba2 + ca2 + cb2 – 2abc

= (ab2 – a2b) + (ac2 – bc2) + (a2c – 2abc + b2c)

= ab(b – a) + c2(a – b) + c(a2 – 2ab + b2)

= -ab(a – b) + c2(a – b) + c(a – b)2

= (a – b)(-ab + c2 + c(a – b))

= (a – b)(-ab + c2 + ac – bc)

= (a – b)[(-ab + ac) + (c2 – bc)]

= (a – b)[a(c – b) + c(c – b)]

= (a – b)(a + c)(c – b)

Với a = 99; b = -9; c = 1, ta có

D = (99 – (-9))(99 + 1)(1 – (-9)) = 108.100.10 = 108000

Đáp án cần chọn là: B


Câu 4:

Ta có (x + 2)(x + 3)(x + 4)(x + 5) – 24 = (x2 + 7x + a)(x2 + 7x + b) với a, b là các số nguyên và a < b. Khi đó a – b bằng

Xem đáp án

Ta có T = (x + 2)(x + 3)(x + 4)(x + 5) – 24

          = [(x + 2)(x + 5)].[(x + 3)(x + 4)] – 24

          = (x2 + 7x + 10).(x2 + 7x + 12) – 24

Đặt x2 + 7x + 11= t, ta được

T = (t – 1)(t + 1) – 24 = t2 – 1 – 24 = t2 – 25 = (t – 5)(t + 5)

Thay t = x2 + 7x + 11, ta được

T = (t – 5)(t + 5) = (x2 + 7x + 11 – 5)( x2 + 7x + 11 + 5)

= (x2 + 7x + 6)( x2 + 7x + 16)

Suy ra a = 6; b = 16 => a – b = -10

Đáp án cần chọn là: D


Câu 11:

Phân tích đa thức x7 – x2 – 1 thành nhân tử ta được

Xem đáp án

Ta có x7 – x2 – 1 = x7 – x – x2 + x – 1

= x(x6 – 1) – (x2 – x + 1)

= x(x3 – 1)(x3 + 1) – (x2 – x + 1)

= x(x3 – 1)(x + 1)(x2 – x + 1) – (x2 – x + 1)

= (x2 – x + 1)[x(x3 – 1)(x + 1) – 1]

= (x2 – x + 1)[(x2 + x)(x3 – x) – 1]

= (x2 – x + 1)(x5 + x4 – x3 – x2 – 1)

Đáp án cần chọn là: B


Bắt đầu thi ngay


Có thể bạn quan tâm


Các bài thi hot trong chương