Tổng hợp Lý thuyết & Trắc nghiệm Chương 3 Đại số 8
-
1711 lượt thi
-
68 câu hỏi
-
100 phút
Danh sách câu hỏi
Câu 1:
Một phương trình bậc nhất một ẩn có mấy nghiệm?
Một phương trình bậc nhất một ẩn luôn có một nghiệm duy nhất.
(lưu ý vì đây là phương trình bậc nhất một ẩn nên a ≠ 0, do đó phương trình luôn có một nghiệm duy nhất. Không có trường hợp a = 0.)
Chọn đáp án B.
Câu 2:
Trong các phương trình sau, phương trình nào là phương trình một ẩn?
+ Một phương trình với ẩn x là hệ thức có dạng A( x ) = B( x ), trong đó A( x ) gọi là vế trái, B( x ) gọi là vế phải.
+ Nghiệm của phương trình là giá trị của ẩn x thoả mãn (hay nghiệm đúng) phương trình.
Nhận xét:
+ Đáp án A: là phương trình một ẩn là x
+ Đáp án B: là phương trình hai ẩn là x,y
+ Đáp án C: là phương trình hai ẩn là a,b
+ Đáp án D: là phương trình ba ẩn là x,y,z
Chọn đáp án A.
Câu 3:
Nghiệm x = 2 là nghiệm của phương trình ?
+ Đáp án A: 5x + 1 = 11 ⇔ 5x = 10 ⇔ x = 10/5 = 2 → Đáp án A đúng.
+ Đáp án B: - 5x = 10 ⇔ x = 10/ - 5 = - 2 → Đáp án B sai.
+ Đáp án C: 4x - 10 = 0 ⇔ 4x = 10 ⇔ x = 5/2 → Đáp án C sai.
+ Đáp án D: 3x - 1 = x + 7 ⇔ 3x - x = 7 + 1 ⇔ 2x = 8 ⇔ x = 4 → Đáp án D sai.
Chọn đáp án A.
Câu 4:
Trong các phương trình sau, cặp phương trình nào tương đương?
Hai phương trình tương đương nếu chúng có cùng một tập hợp nghiệm.
Đáp án A:
+ Phương trình x = 2 có tập nghiệm S = { 2 }
+ Phương trình x( x - 2 ) = 0 ⇔ có tập nghiệm là S = { 0;2 }
→ Hai phương trình không tương đương.
Đáp án B:
+ Phương trình x - 2 = 0 có tập nghiệm S = { 2 }
+ Phương trình 2x - 4 = 0 có tập nghiệm là S = { 2 }
Hai phương trình tương đương.
Đáp án C:
+ Phương trình 3x = 0 có tập nghiệm là S = { 0 }
+ Phương trình 4x - 2 = 0 có tập nghiệm là S = { 1/2 }
→ Hai phương trình không tương đương.
Đáp án D:
+ Phương trình ⇔ x = ± 3 có tập nghiệm là S = { ± 3 }
+ Phương trình 2x - 8 = 0 có tập nghiệm là S = { 4 }
→ Hai phương trình không tương đương.
Chọn đáp án B.
Câu 5:
Tập nghiệm của phương trình 4x - 12 = 0 là ?
Ta có: 4x - 12 = 0 ⇔ 4x = 12 ⇔ x = 3
→ Phương trình có tập nghiệm là S = { 3 }
Chọn đáp án C.
Câu 6:
Phương trình có nghiệm là ?
Ta có: - 1/2x = 5 ⇔ x = 5/( - 1/2) = - 10.
Vậy phương trình có tập nghiệm là x = - 10.
Chọn đáp án B.
Câu 7:
Nghiệm của phương trình 3x - 2 = - 7 là?
Ta có: 3x - 2 = - 7 ⇔ 3x = - 7 + 2 ⇔ 3x = - 5
⇔ x = - 5/3
Vậy nghiệm của phương trình là x = - 5/3
Chọn đáp án B.
Câu 8:
Nghiệm của phương trình là?
Ta có: y/5 - 5 = - 5 ⇔ y/5 = - 5 - ( - 5) ⇔ y/5 = 0
⇔ y = 5.0 ⇔ y = 0.
Vậy nghiệm của phương trình là y = 0.
Chọn đáp án C.
Câu 9:
Giá trị của m để phương trình 2x = m + 1 có nghiệm x = - 2 là?
Phương trình 2x = m + 1 có nghiệm x = - 2
Khi đó ta có: 2.( - 2 ) = m + 1 ⇔ m + 1 = - 4 ⇔ m = - 5.
Vậy m = - 5 là giá trị cần tìm.
Chọn đáp án C.
Câu 10:
Tập nghiệm của phương trình - 4x + 7 = - 1 là?
Ta có: - 4x + 7 = - 1 ⇔ - 4x = - 1 - 7 ⇔ - 4x = - 8
⇔ x = - 8/ - 4 ⇔ x = 2.
Vậy phương trình có tập nghiệm là S = { 2 }.
Chọn đáp án A.
Câu 11:
là nghiệm của phương trình nào sau đây?
+ Đáp án A: 3x - 2 = 1 ⇔ 3x = 3 ⇔ x = 1 → Loại.
+ Đáp án B: 3x - 1 = 0 ⇔ 3x = 1 ⇔ x = 1/3 → Chọn.
+ Đáp án C: 4x + 3 = - 1 ⇔ 4x = - 4 ⇔ x = - 1 → Loại.
+ Đáp án D: 3x + 2 = - 1 ⇔ 3x = - 3 ⇔ x = - 1 → Loại.
Chọn đáp án B.
Câu 12:
Giá trị của m để cho phương trình sau nhận x = 2 làm nghiệm: 3x - 2m = x + 5 là:
Phương trình 3x - 2m = x + 5 có nghiệm là x = 2
Khi đó ta có: 3.2 - 2m = 2 + 5 ⇔ 2m = - 1
⇔ m = - 1/2.
Vậy m = - 1/2 là giá trị cần tìm.
Chọn đáp án A.
Câu 13:
Nghiệm của phương trình là
Phương trình
Vậy phương trình có nghiệm là x = 1
Chọn đáp án A.
Câu 14:
Nghiệm của phương trình là
Phương trình
⇔ x + 2 = 0 ⇔ x = - 2
Vậy phương trình có nghiệm x = - 2
Chọn đáp án A.
Câu 15:
Giải phương trình sau: .
Điều kiện xác định: x ≠ 2; x ≠ -1
Kết hợp điều kiện, vậy nghiệm phương trình đã cho là x = - 3
Chọn đáp án D
Câu 16:
Nghiệm của phương trình là
Phương trình
Vậy phương trình có nghiệm x = 1
Chọn đáp án B.
Câu 17:
Nghiệm của phương trình - 8( 1,3 - 2x ) = 4( 5x + 1 ) là:
Phương trình - 8( 1,3 - 2x ) = 4( 5x + 1 )
⇔ 4x + 72/5 = 0 ⇔ x = - 18/5
Vậy phương trình có nghiệm x = - 18/5
Chọn đáp án C.
Câu 19:
Nghiệm của phương trình là
Phương trình
⇔ 8x + 5 - 2(3x + 1) = 2(2x + 1) + x + 4
⇔ 8x + 5 - 6x - 2 = 4x + 2 + x + 4
⇔ 2x + 3 = 5x + 6
⇔ - 3x - 3 = 0
⇔ x = - 1
Vậy phương trình có nghiệm x = - 1
Chọn đáp án C.
Câu 20:
Nghiệm của phương trình là
Phương trình
Vậy phương trình có vô số nghiệm.
Chọn đáp án A.
Câu 21:
Tìm các giá trị của x để biểu thức sau có giá trị bằng 2:
Điều kiện:
Để biểu thức đã cho có giá trị bằng 2 thì:
Kết hợp điều kiện phương trình đã cho có 2 nghiệm là x = 0 và
Chọn đáp án A
Câu 22:
Nghiệm của phương trình ( x - 2 )( x + 1 ) = 0 là:
Phương trình ( x - 2 )( x + 1 ) = 0
Vậy nghiệm của phương trình là x = 2;x = - 1
Chọn đáp án D.
Câu 25:
Giá trị của m để phương trình ( x + 3 )( x + 1 - m ) = 4 có nghiệm x = 1 là?
Do phương trình ( x + 3 )( x + 1 - m ) = 4 có nghiệm x = 1 nên ta có:
(1 + 3)(1 + 1 - m) = 4
⇔ 4(2 - m) = 4
⇔ 2 - m = 1
⇔ m = 1
Vậy m = 1.
Chọn đáp án A.
Câu 28:
Nghiệm của phương trình là:
⇒ x = 3;x = 1
Vậy nghiệm của phương trình là x = 1;x = 3
Chọn đáp án B
Câu 29:
Tìm nghiệm của phương trình sau: .
Kết hợp điều kiện thì nghiệm của phương trình đã cho là x = 1
Chọn đáp án D
Câu 30:
Giải phương trình sau:
Kết hợp điều kiện ta được nghiệm của phương trình đã cho là x = -1 và
Chọn đáp án C
Câu 31:
Giá trị của m để phương trình (2x - m)/(3x + 1) = 2 có nghiệm x = 1 là?
Phương trình (2x - m)/(3x + 1) = 2 có nghiệm x = 1 nên ta có:
(2.1 - m)/(3.1 + 1) = 2
⇔ (2 - m)/4 = 2
⇔ 2 - m = 8
⇔ m = - 6
Vậy m = - 6
Chọn đáp án B.
Câu 32:
Nghiệm của phương trình là
ĐKXD: x ≠ {2, 3, 4, 5}
Phương trình
Vậy nghiệm của phương trình là x = - 1;x = 7/2
Chọn đáp án C.
Câu 33:
Tìm hai số tự nhiên chẵn liên tiếp biết biết tích của chúng là 24 là:
Gọi 2 số chẵn liên tiếp cần tìm là x;x + 2 (x > 0;x ∈ Z)
Theo bài ra ta có: x(x + 2) = 24
⇔x(x + 6) - 4(x + 6) = 0
⇔ (x - 4)(x + 6) = 0 ⇔ x = 4 (Do x + 6 > 0∀ x > 0 )
Vậy hai số cần tìm là 4;6.
Chọn đáp án B.
Câu 34:
Một hình chữ nhật có chiều dài hơn chiều rộng 3cm. Chu vi hình chữ nhật là 100cm. Chiều rộng hình chữ nhật là:
Gọi chiều rộng hình chữ nhật là x(cm) (x > 0)
→ Chiều dài hình chữ nhật là x + 3(cm)
Do chu vi hình chữ nhật là 100cm nên ta có:
2[ x + (x + 3) ] = 100 ⇔ 2x + 3 = 50 ⇔ x = 23,5
Vậy chiều rộng hình chữ nhật là 23,5cm
Chọn đáp án A.
Câu 35:
Một xe đạp khởi hành từ điểm A, chạy với vận tốc 15 km/h. Sau đó 6 giờ, một xe hơi đuổi theo với vận tốc 60 km/h. Hỏi xe hơi chạy trong bao lâu thì đuổi kịp xe đạp?
Gọi t ( h ) là thời gian từ lúc xe hơi chạy đến lúc đuổi kịp xe đạp; t > 0.
⇒ t + 6 ( h ) là thời gian kể từ lúc xe đạp đi đến lúc xe hơi đuổi kịp.
+ Quãng đường xe đạp đi được là s1 = 15( t + 6 ) km.
+ Quãng đường xe hơi đi được là s2 = 60t km.
Vì hai xe xuất phát tại điểm A nên khi gặp nhau s1 = s2.
Khi đó ta có: 15(t + 6) = 60t ⇔ 60t - 15t = 90 ⇔ t = 2(h) (thỏa mãn)
Vậy xe hơi chạy được 2 giờ thì đuổi kịp xe đạp.
Chọn đáp án B.
Câu 36:
Một người đi từ A đến B. Trong nửa quãng đường đầu người đó đi với vận tốc 20km/h phần đường còn lại đi với tốc độ 30km/h. Vận tốc trung bình của người đó khi đi từ A đến B là:
Gọi vận tốc trung bình của người đó là: x(km/h) (x > 0)
Gọi độ dài nửa quãng đường AB là: a(km)
Khi đó ta có:
+ Thời gian đi nửa quãng đường đầu là: a/20(h)
+ Thời gian đi nửa quãng đường sau là: a/30(h)
→ Thời gian đi cả quãng đường AB là:
Do đó ta có:
Vậy vận tốc cần tìm là 24km/h
Chọn đáp án B.
Câu 37:
Hai lớp A và B của một trường trung học tổ chức cho học sinh tham gia một buổi meeting. Người ta xem xét số học sinh mà một học sinh lớp A nói chuyện với học sinh lớp B thì thấy rằng: Bạn Khiêm nói chuyện với 5 bạn, bạn Long nói chuyện với 6 bạn, bạn Tùng nói chuyện với 7 bạn,…và đến bạn Hải là nói chuyện với cả lớp B. Tính số học sinh lớp B biết 2 lớp có tổng cộng 80 học sinh.
Gọi số học sinh lớp A là x (0 < x < 80, x ∈ N)
Bạn thứ nhất của lớp A (Khiêm) nói chuyện với 4 + 1 bạn
Bạn thứ hai của lớp A (Long) nói chuyện với 4 + 2 bạn
Bạn thứ ba của lớp A (Tùng) nói chuyện với 4 + 3 bạn
…………………
Bạn thứ x của lớp A (Hải) nói chuyện với bạn
Do đó số học sinh lớp B là 4 + x
Vì 2 lớp có tổng cộng 80 học sinh nên ta có:
x + (4 + x) = 80
⇔ 2x - 76 = 0
⇔ x = 38
Vậy số học sinh lớp B là: 80 - 38 = 42 (Học sinh)
Chọn đáp án B.
Câu 38:
Khiêm đi từ nhà đến trường Khiêm thấy cứ 10 phút lại gặp một xe buýt đi theo hướng ngược lại. Biết rằng cứ 15 phút lại có 1 xe buýt đi từ nhà Khiêm đến trường là cũng 15 phút lại có 1 xe buýt đi theo chiều ngược lại. Các xe chuyển động với cùng vận tốc. Hỏi cứ sau bao nhiêu phút thì có 1 xe cùng chiều vượt qua Khiêm.
Gọi thời gian phải tìm là x (Phút)
Gọi thời gian Khiêm đi từ nhà đến trường là a (Phút)
Số xe Khiêm gặp khi đi từ nhà đến trường đi theo hướng ngược lại là: a/10
Số xe Khiêm gặp khi đi từ nhà đến trường đi theo hướng cùng chiều là: a/x
Số xe đi qua Khiêm khi Khiêm đi từ nhà đến trường cũng chính là số xe đã đi trên đoạn đường từ nhà Khiêm đến trường theo cả 2 chiều là:
Ta có phương trình:
Vậy cứ sau 30 phút lại có xe cùng chiều vượt qua Khiêm.
Chọn đáp án C.
Câu 39:
Mẹ hơn con 24 tuổi. Sau 2 năm nữa thì tuổi mẹ gấp 3 lần tuổi con. Tuổi của con hiện nay là:
Gọi số tuổi của con hiện tại là x (Tuổi) (x ∈ N*)
→ số tuổi của mẹ hiện nay là x + 24 (Tuổi)
Theo bài ra ta có: 3(x + 2) = x + 24 + 2
⇔ 2x - 20 = 0
⇔ x = 10
Vậy hiện tại tuổi của con là 10 tuổi.
Chọn đáp án B.
Câu 40:
Phương trình (1) và (2) có tương đương hay không?
(1) x - 1 = 4
(2) (x - 1)x = 4x
Phương trình (1) x - 1 = 4 có tập nghiệm S1 = 5
Phương trình (2): (x - 1)x = 4x ⇔ (x - 1)x - 4x = 0 ⇔ (x - 5)x = 0
Phương trình (2) có tập nghiệm là S2 = 0;5
Vì S1 ≠ S2 nên hai phương trình (1) và (2) không tương đương.
Câu 41:
Tìm điều kiện của m để phương trình sau là phương trình bậc nhất một ẩn: (2m - 1)x + 3 - m = 0
(2m - 1)x + 3 - m = 0 là phương trình bậc nhất một ẩn
⇔ 2m - 1 ≠ 0
⇔ m ≠ 1/2
Câu 42:
Tìm điều kiện của m để phương trình sau là phương trình bậc nhất một ẩn: (3m - 5)x + 1 - m = 0
(3m - 5)x + 1 - m = 0 là phương trình bậc nhất một ẩn
⇔m ≠ 5/3
Câu 43:
Cho phương trình 2(x + 3) – 3 = 3 – x.
x = - 3 có thỏa mãn phương trình không
Với x = -3 thì
VT = 2(x + 3) – 3 = 2(– 3 + 3) – 3 = 2. 0 – 3 = 0 – 3 = – 3
Ta có: VP = 3 – x = 3 – (– 3) = 6 ≠ – 3
Vậy x = - 3 không thỏa mãn phương trình
Câu 44:
Cho phương trình 2(x + 3) – 3 = 3 – x.
x = 0 có là một nghiệm của phương trình không?
Với x = 0 thì
VT = 2(0 + 3) – 3 = 2.3 – 3 = 6 – 3 = 3
Ta có: VP = 3 – x = 3 – 0 = 3 = VT
⇒ x = 0 có là một nghiệm của phương trình
Vậy x = 0 là nghiệm của phương trình.
Câu 45:
Tìm giá trị của m sao cho phương trình sau nhận x = 2 làm nghiệm: 3x - 2m = x + 5.
Phương trình 3x - 2m = x + 5 nhận x = 2 làm nghiệm nên ta có:
3.2 - 2m = 2 + 5
⇔ 2m = - 1 ⇔ m = - 1/2
Vậy m = - 1/2
Câu 46:
Tìm giá trị của m, biết rằng phương trình: nhận x = 2 làm nghiệm: 5m - 7x = 3x
Phương trình 5m - 7x = 3x nhận x = 2 làm nghiệm nên ta có:
5m - 7.2 = 3.2 ⇔ 5m = 20 ⇔ m = 4
Vậy m = 4
Câu 47:
Giải phương trình: 3x + 1 = x + 2
Phương trình ⇔ 2x - 1 = 0 ⇔ x = 1/2
Vậy phương trình có nghiệm x = 1/2
Câu 48:
Giải phương trình:
Phương trình
⇔ - 8x + 4 = 0
⇔ x = 1/2
Vậy phương trình có nghiệm x = 1/2
Câu 50:
Giải phương trình: x(x + 3) = (3 - x)(1 + x)
⇔ 2x(x - 1) + 3(x - 1) = 0
⇔ (x - 1)(2x + 3) = 0
Vậy tập nghiệm của phương trình là S = { - 3/2;1 }
Câu 53:
Giải các phương trình sau
Ta có:
⇔ 5x + 1 = - 15 ⇔ x = - 16/5
Vậy tập nghiệm của phương trình là S = { - 16/5 }
Câu 55:
Giải phương trình:
ĐKXĐ: x ≠ ± 1;x ≠ ± 2
Phương trình
Vậy tập nghiệm của phương trình là S = { ± √ 2 }
Câu 56:
Mẫu số của một phân số lớn hơn tử của nó là 5 đơn vị, nếu tăng cả tử thêm 2 đơn vị và mẫu thêm 4 đơn vị, thì được một phân số mới bằng phân số ban đầu . Tìm phân số cho ban đầu
Gọi tử số của phân số ban đầu là a, theo bài ra ta có:
(Điều kiện: a ≠ - 5;a ≠ - 9 )
a(a + 9) = (a + 2)(a + 5)
⇔ 2a = 10 ⇔ a = 5 (Thỏa mãn)
Vậy phân số cần tìm là: 5/10
Câu 57:
Giải phương trình:
⇔
Với t = 3 ⇒ x = - 1/2
Với t = - 3 ⇒ x = - 5/4
Vậy tập nghiệm của phương trình là S = { - 1/2; - 5/4 }
Câu 59:
Giải phương trình:
Ta thấy x = 1 không phải nghiệm của phương trình nên nhân 2 vế của phương trình với x - 1 ta có:
⇔ x = 1(KTM)
Vậy phương trình đã cho vô nghiệm.
Câu 61:
Giải các phương trình sau:
ĐKXĐ: x ≠ 1 hoặc x = -1.
Ta có:
⇔ 8x = - 10 ⇔ x = - 5/4.
Vậy phương trình đã cho có nghiệm là x = - 5/4.
Câu 62:
Giải các phương trình sau
Ta có:
⇔ x - 64 = 0 ⇔ x = 64
Vậy phương trình đã cho có nghiệm là x = 64
Câu 63:
Giải phương trình
ĐKXĐ: x ≠ 1;x ≠ 2;x ≠ 3;x ≠ 4
Phương trình
Vậy tập nghiệm của phương trình là S = { 0;5/2 }
Câu 65:
Giải các phương trình sau:
ĐKXĐ:
Ta có:
⇔ 2x = 6 ⇔ x = 3.
Vậy phương trình đã cho có nghiệm là x = 3.